Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ. However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3-D printed micromanipulator into the utricular nerve of oyster toadfish ( Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were passively moved using a sled system along an underwater track at variable speeds (velocity: 4.0–12.5 cm/s; acceleration: 0.2–2.6 cm/s 2 ) and while fish freely swam (velocity: 3.5–18.6 cm/s; acceleration: 0.8–29.8 cm/s 2 ). Afferent fiber activities (spikes/s) increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained movements. In addition, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activity levels (spikes/s) in response tomore »
-
Abstract Consumers mediate nutrient cycling through excretion and egestion across most ecosystems. In nutrient‐poor tropical waters such as coral reefs, nutrient cycling is critical for maintaining productivity. While the cycling of fish‐derived inorganic nutrients via excretion has been extensively investigated, the role of egestion for nutrient cycling has remained poorly explored. We sampled the fecal contents of 570 individual fishes across 40 species, representing six dominant trophic guilds of coral reef fishes in Moorea, French Polynesia. We measured fecal macro‐ (proteins, carbohydrates, lipids) and micro‐ (calcium, copper, iron, magnesium, manganese, zinc) nutrients and compared the fecal nutrient quantity and quality across trophic guilds, taxa, and body size. Macro‐ and micronutrient concentrations in fish feces varied markedly across species. Genera and trophic guild best predicted fecal nutrient concentrations. In addition, nutrient composition in feces was unique among species within both trophic guilds (herbivores and corallivores) and genera (
Acanthurus andChaetodon ). Particularly, certain coral reef fishes (e.g.,Thalassoma hardwicke ,Chromis xanthura ,Chaetodon pelewensis andAcanthurus pyroferus ) harbored relatively high concentrations of micronutrients (e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean productivity and positively impact coral physiological performances. Given the nutrient‐rich profiles across reef fish feces, conserving holistic reef fish communities ensures the availabilitymore »Free, publicly-accessible full text available June 11, 2024