Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyze the evolution of massive (log10[M⋆/M⊙] > 10) galaxies atz∼ 1–4 selected from JWST Cosmic Evolution Early Release Survey (CEERS). We infer the physical properties of all galaxies in the CEERS NIRCam imaging through spectral energy distribution (SED) fitting withdense basisto select a sample of high-redshift massive galaxies. Where available we include constraints from additional CEERS observing modes, including 18 sources with MIRI photometric coverage, and 28 sources with spectroscopic confirmations from NIRSpec or NIRCam WFSS. We sample the recovered posteriors in stellar mass from SED fitting to infer the volume densities of massive galaxies across cosmic time, taking into consideration the potential for sample contamination by active galactic nuclei. We find that the evolving abundance of massive galaxies tracks expectations based on a constant baryon conversion efficiency in dark matter halos forz∼ 1–4. At higher redshifts, we observe an excess abundance of massive galaxies relative to this simple model, resulting in a shallower decline of observed volume densities of massive galaxies. These higher abundances can be explained by modest changes to star formation physics and/or the efficiencies with which star formation occurs in massive dark matter halos, and are not in tension with modern cosmology.more » « less
-
Abstract We present the first results from the Web Epoch of Reionization LyαSurvey (WERLS), a spectroscopic survey of Lyαemission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J< 26) galaxy candidates with photometric redshifts of 5.5 ≲z≲ 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11z∼ 7–8 Lyαemitters (LAEs; three secure and eight tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∼13%, which is broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyαemission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1 <MUV< −19.8. With two LAEs detected atz= 7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large-scale distribution of mass relative to the ionization state of the Universe.more » « less
-
ABSTRACT We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and $${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $$\mu$$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $$50{{\ \rm per\ cent}}$$ solar. To explain the measured dust-corrected luminosity ratios of $$\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$$ and $$\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$$ for our sample, ionization parameters log (U) < −2 and electron densities $$\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.more » « less
-
Abstract We present rest-frame optical emission-line flux ratio measurements for five z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliable relative flux calibration of emission lines that are closely separated in wavelength, despite the uncertain absolute spectrophotometry of the current version of the reductions. Compared to z ∼ 3 galaxies in the literature, the z > 5 galaxies have similar [O iii ] λ 5008/H β ratios, similar [O iii ] λ 4364/H γ ratios, and higher (∼0.5 dex) [Ne III ] λ 3870/[O II ] λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [Ne III ] λ 3870/[O II ] λ 3728, [O iii ] λ 4364/H γ , and [O iii ] λ 5008/H β emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( log ( Q ) ≃ 8 − 9 , units of cm s −1 ), low metallicity ( Z / Z ⊙ ≲ 0.2), and very high pressure ( log ( P / k ) ≃ 8 − 9 , units of cm −3 ). The combination of [O iii ] λ 4364/H γ and [O iii ] λ (4960 + 5008)/H β line ratios indicate very high electron temperatures of 4.1 < log ( T e / K ) < 4.4 , further implying metallicities of Z / Z ⊙ ≲ 0.2 with the application of low-redshift calibrations for “ T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn.more » « less
An official website of the United States government
