skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varney, Rebecca M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many molluscan genomes have been published to date, however only three are from representatives of the subphylum Aculifera (Polyplacophora, Caudofoveata, and Solenogastres), the sister taxon to all other molluscs. Currently, genomic resources are completely lacking for Solenogastres. This gap in knowledge hinders comparative and evolutionary studies. Here, we sequenced the genomes of the solenogaster aplacophoransEpimenia babaiSalvini-Plawen, 1997 andNeomenia megatrapezataSalvini-Plawen & Paar-Gausch, 2004 using a hybrid approach combining Oxford Nanopore and Illumina reads. ForE. babai, we produced a 628 Mbp haploid assembly (N50 = 413 Kbp, L50 = 370) that is rather complete with a BUSCO completeness score of 90.1% (82.0% single, 8.1% duplicated, 6.0% fragmented, and 3.9% missing). ForN. megatrapezata, we produced a 412 Mbp haploid assembly (N50 = 132 Kbp, L50 = 881) that is also rather complete with a BUSCO completeness score of 85.1% (81.7% single, 3.4% duplicated, 8.1% fragmented, and 6.8% missing). Our annotation pipeline predicted 25,393 gene models forE. babaiwith a BUSCO score of 92.4% (80.5% single, 11.9% duplicated, 4.9% fragmented, and 2.7% missing) and 22,463 gene models forN. megatrapezatawith a BUSCO score of 90.2% (81.0% single, 9.2% duplicated, 4.7% fragmented, and 5.1% missing). Phylogenomic analysis recovered Solenogastres as the sister taxon to Polyplacophora and Aculifera as the sister taxon to all other sampled molluscs with maximal support. These represent the first whole-genome resources for Solenogastres and will be valuable for future studies investigating this understudied group and molluscan evolution as a whole. 
    more » « less
  2. Mollusca is the second most species-rich phylum and includes animals as disparate as octopuses, clams, and chitons. Dozens of molluscan genomes are available, but only one representative of the subphylum Aculifera, the sister taxon to all other molluscs, has been sequenced to date, hindering comparative and evolutionary studies. To facilitate evolutionary studies across Mollusca, we sequenced the genome of a second aculiferan mollusc, the lepidopleurid chiton Hanleya hanleyi (Bean 1844), using a hybrid approach combining Oxford Nanopore and Illumina reads. After purging redundant haplotigs and removing contamination from this 1.3% heterozygous genome, we produced a 2.5 Gbp haploid assembly (>4X the size of the other chiton genome sequenced to date) with an N50 of 65.0 Kbp. Despite a fragmented assembly, the genome is rather complete (92.0% of BUSCOs detected; 79.4% complete plus 12.6% fragmented). Remarkably, the genome has the highest repeat content of any molluscan genome reported to date (>66%). Our gene annotation pipeline predicted 69,284 gene models (92.9% of BUSCOs detected; 81.8% complete plus 11.1% fragmented) of which 35,362 were supported by transcriptome and/or protein evidence. Phylogenomic analysis recovered Polyplacophora sister to all other sampled molluscs with maximal support. The Hanleya genome will be a valuable resource for studies of molluscan biology with diverse potential applications ranging from evolutionary and comparative genomics to molecular ecology. 
    more » « less
  3. Venkatesh, B (Ed.)
    Abstract Molluscs biomineralize structures that vary in composition, form, and function, prompting questions about the genetic mechanisms responsible for their production and the evolution of these mechanisms. Chitons (Mollusca, Polyplacophora) are a promising system for studies of biomineralization because they build a range of calcified structures including shell plates and spine- or scale-like sclerites. Chitons also harden the calcified teeth of their rasp-like radula with a coat of iron (as magnetite). Here we present the genome of the West Indian fuzzy chiton Acanthopleura granulata, the first from any aculiferan mollusc. The A. granulata genome contains homologs of many genes associated with biomineralization in conchiferan molluscs. We expected chitons to lack genes previously identified from pathways conchiferans use to make biominerals like calcite and nacre because chitons do not use these materials in their shells. Surprisingly, the A. granulata genome has homologs of many of these genes, suggesting that the ancestral mollusc may have had a more diverse biomineralization toolkit than expected. The A. granulata genome has features that may be specialized for iron biomineralization, including a higher proportion of genes regulated directly by iron than other molluscs. A. granulata also produces two isoforms of soma-like ferritin: one is regulated by iron and similar in sequence to the soma-like ferritins of other molluscs, and the other is constitutively translated and is not found in other molluscs. The A. granulata genome is a resource for future studies of molluscan evolution and biomineralization. 
    more » « less