- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bartels, Randy (2)
-
Pinaud, Olivier (2)
-
Varughese, Maxine (2)
-
Farah, Yusef (1)
-
Field, Jeff (1)
-
Murray, Gabe (1)
-
Wang, Lang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This work is concerned with optical imaging in strongly diffusive environments. We consider a typical setting in optical coherence tomography where a sample is probed by a collection of wavefields produced by a laser and propagating through a microscope. We operate in a scenario where the illuminations are in a speckle regime, namely fully randomized. This occurs when the light propagates deep in highly heterogeneous media. State-of-the-art coherent techniques are based on the ballistic part of the wavefield, that is the fraction of the wave that propagates freely and decays exponentially fast. In a speckle regime, the ballistic field is negligible compared to the scattered field, which precludes the use of coherent methods and different approaches are needed. We propose a new strategy based on blind source separation and total variation deconvolution to obtain images with diffraction-limited resolution. The source separation allows us to isolate the fields diffused by the different scatterers to be imaged, while the deconvolution exploits the speckle memory effect to estimate the relative position of these scatterers. Our method is validated with numerical simulations and is shown to be effective not only for imaging discrete scatterers, but also continuous objects.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Farah, Yusef; Murray, Gabe; Field, Jeff; Varughese, Maxine; Wang, Lang; Pinaud, Olivier; Bartels, Randy (, Optica)Third harmonic generation (THG) provides a valuable, label-free approach to imaging biological systems. To date, THG microscopy has been performed using point-scanning methods that rely on intensity measurements lacking phase information of the complex field. We report the first demonstration, to the best of our knowledge, of THG holographic microscopy and the reconstruction of the complex THG signal field with spatial synthetic aperture imaging. Phase distortions arising from measurement-to-measurement fluctuations and imaging components cause optical aberrations in the reconstructed THG field. We have developed an aberration-correction algorithm that estimates and corrects these phase distortions to reconstruct the spatial synthetic aperture THG field without optical aberrations.more » « less
An official website of the United States government
