skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vasiu, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we develop an efficient numerical scheme for solving one-dimensional hyperbolic interface problems. The immersed finite element (IFE) method is used for spatial discretization, which allows the solution mesh to be independent of the interface. Consequently, a fixed uniform mesh can be used throughout the entire simulation. The method of lines is used for temporal discretization. Numerical experiments are provided to show the features of these new methods. 
    more » « less
  2. We present a high order immersed finite element (IFE) method for solving 1D parabolic interface problems. These methods allow the solution mesh to be independent of the interface. Time marching schemes including Backward-Eulerand Crank-Nicolson methods are implemented to fully discretize the system. Numerical examples are provided to test the performance of our numerical schemes. 
    more » « less