Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent work has demonstrated that changes in resource availability can alter a consumer's thermal performance curve (TPC). When resources decline, the optimal temperature and breadth of thermal performance also decline, leading to a greater risk of warming than predicted by static TPCs. We investigate the effect of temperature on coupled consumer‐resource dynamics, focusing on the potential for changes in the consumer TPC to alter extinction risk. Coupling consumer and resource dynamics generally reduces the potential for resource decline to exacerbate the effects of warming via changes to the TPC due to a reduction in top‐down control when consumers near the limits of their thermal performance curve. However, if resources are more sensitive to warming, consumer TPCs can be reshaped by declining resources, leading to increased extinction risk. Our work elucidates the role of top‐down and bottom‐up regulation in determining the extent to which changes in resource density alter consumer TPCs.more » « less
-
Abstract Intraspecific trait variation (ITV) is a widespread feature of life, but it is an open question how ITV affects between‐species coexistence. Recent theoretical studies have produced contradictory results, with ITV promoting coexistence in some models and undermining coexistence in others. Here we review recent work and propose a new conceptual framework to explain how ITV affects coexistence between two species. We propose that all traits belong to one of two categories: niche traits and hierarchical traits. Niche traits determine an individual's location on a niche axis or trade‐off axis, such that changing an individual's trait makes it perform better in some circumstances and worse in others. Hierarchical traits represent cases where conspecifics with different traits have the same niche, but one performs better under all circumstances, such that there are winners and losers. Our framework makes predictions for how intraspecific variation in each type of trait affects coexistence by altering stabilizing mechanisms and fitness differences. For example, ITV in niche traits generally weakens the stabilizing mechanism, except when it generates a generalist–specialist trade‐off. On the other hand, hierarchical traits tend to impact competitors differently, such that ITV in one species will strengthen the stabilizing mechanism while ITV in the other species will weaken the mechanism. We re‐examine 10 studies on ITV and coexistence, along with four novel models, and show that our framework can explain why ITV promotes coexistence in some models and undermines coexistence in others. Overall, our framework reconciles what were previously considered to be contrasting results and provides both theoretical and empirical directions to study the effect of ITV on species coexistence.more » « less
-
Abstract Understanding how altered temperature regimes affect harmful cyanobacterial bloom formation is essential for managing aquatic ecosystems amidst ongoing climate warming. This is difficult because algal performance can depend on both current and past environments, as plastic physiological changes (acclimation) may lag behind environmental change. Here, we investigate how temperature variation on sub‐weekly timescales affects population growth and toxin production given acclimation. We studied four ecologically important freshwater cyanobacterial strains under low‐ and high‐nutrient conditions, measuring population growth rate after acclimation and new exposure to a range of temperatures. Cold‐acclimated populations (15.7°C) outperformed fully acclimated populations (held in constant conditions) across 65% of thermal environments, while hot‐acclimated populations (35.7–42.6°C) underperformed across 75% of thermal environments. Over a 5‐day period, cold‐acclimatedMicrocystis aeruginosaproduced ~2.5‐fold more microcystin than hot‐acclimated populations experiencing the same temperature perturbation. Our results suggest that thermal variation and physiology interact in underappreciated ways to influence cyanobacterial growth, toxin production, and likely bloom formation.more » « less
An official website of the United States government
