skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Velazquez, Dee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationDisplaying proportional data across many spatially resolved coordinates is a challenging but important data visualization task, particularly for spatially resolved transcriptomics data. Scatter pie plots are one type of commonly used data visualization for such data but present perceptual challenges that may lead to difficulties in interpretation. Increasing the visual saliency of such data visualizations can help viewers more accurately identify proportional trends and compare proportional differences across spatial locations. ResultsWe developed scatterbar, an open-source R package that extends ggplot2, to visualize proportional data across many spatially resolved coordinates using scatter stacked bar plots. We apply scatterbar to visualize deconvolved cell-type proportions from a spatial transcriptomics dataset of the adult mouse brain to demonstrate how scatter stacked bar plots can enhance the distinguishability of proportional distributions compared to scatter pie plots. Availability and implementationscatterbar is available on CRAN https://cran.r-project.org/package=scatterbar with additional documentation and tutorials at https://jef.works/scatterbar/. 
    more » « less