Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells. The underlying cause of cancer relates to the cell cycle, during which DNA is replicated. Cancer cells accumulate DNA mutations that help them acquire cancerous features, such as evading cell death and indefinite growth [1]. If these DNA mutations are in coding regions, they are translated to mutated proteins. The epitopes that contain these mutations are called neoantigens. Neoantigens are highly tumor-specific and can be targeted with immunotherapies [2]. During cell division, tumor suppressor genes play a role in the case of DNA damage or replication errors. The p53 protein is a tumor suppressor gene product that prevents tumor formation by activating processes that block cell division when DNA damage has occurred [3]. Mutant p53 does not effectively bind DNA or activate the production of proteins necessary for the stop signal. This project explored a hypothesis that a set of distinct p53 protein mutations can be selected to serve as potential targets for cancer immunotherapy and vaccines by using immunoinformatics predictive analysis tools. By comparing these potential targets with experimental results, we can predict epitopes that may serve as neoantigen targets for immunotherapy. We identified candidate immunogenic epitopes using the NCI’s TP53 Database (NCI DB - tp53.isb-cgc.org), Cancer Epitope Database and Analysis Resource (CEDAR - cedar.iedb.org), and a powerful new bioinformatics tool (nextgen-tools.iedb.org/) [4] hosted by Immune Epitope Database (IEDB - iedb.org) and CEDAR. Comparing predicted epitopes to highly mutable regions of p53 in tumor variants from NCI DB revealed areas of overlap that may be priority candidate epitopes for immunotherapy. Experimental data from CEDAR tested the immunogenicity of normal and mutated protein versions to help avoid harmful cross-reactions. These results help predict cancer epitope amino acid sequences relevant to understanding the immune system's role in cancer progression, prevention, and treatment. These studies also set the stage for important subsequent undergraduate research projects to further characterize predicted cancer neoantigens.more » « lessFree, publicly-accessible full text available August 19, 2025
-
Life science organizations are increasingly using hackathons to bring communities together to tackle shared problems, teach skills, and develop new resources. In this study, we explored the potential benefits of hackathons for the biotechnology workforce education community by organizing two hackathons centered around developing research projects in antibody engineering—a practice widely employed in the biotechnology industry but uncommon in biotechnology education. To integrate antibody engineering into courses, instructors need protocols for both computational and laboratory methods. Developing and testing these protocols provides rich opportunities for undergraduate research, allowing students to learn industry-relevant skills and contribute to creating materials for the community. During the hackathons, teams of faculty, students, and industry partners collaborated to generate several new research projects. Each hackathon was only a few days, yet student participants reported benefits similar to those attributed to traditional undergraduate research experiences. We share lessons learned from these hackathons and provide insights for the workforce education community for hosting similar events.more » « less
-
Disparities in undergraduate STEM degree completions across the United States are a national concern. Undergraduate-level research opportunities are vital for developing future researchers and building their scientific identity. These experiences can help students in community colleges acquire 21st-century skills and build confidence in their ability to do science [1-3]. The development and implementation of guided research experiences provide users with a topic they are familiar with but not necessarily experts in, like SARS-CoV2 infections. In this particular study, the Immune Epitope Database (IEDB) was used to identify amino acid residues located on the immunogenic regions of the spike glycoprotein of SARS-CoV-2 variants: Alpha, Beta, Gamma, Delta, and Omicron. IEDB is a web-based bioinformatics tool that contains published epitope information and prediction aids that can be used as a research platform for studying infectious diseases. The objective of this study aimed to map the immunogenic regions on the spike glycoproteins of the SARS-CoV-2 variants and predict the immune evasion of these variants [4-6]. Identifying the antigenic determinations that bind to the antibodies is essential for designing future candidates for peptide-based vaccines. This study aims to map the immunogenic regions on the spike glycoproteins of the SARS-CoV-2 variants and predict the immune evasion of these variants [4-6]. Identifying the antigenic determinations that bind to the antibodies is essential for designing future candidates for peptide-based vaccines. This research identifies regions where mutations have occurred in the virus, which are important to study as they can affect the virus's immune evasion and impact available vaccines. Targeting multiple immunogenic regions unaffected by mutations can serve as potential targets for new vaccines, providing better protection against different variants.more » « less
-
McFarland, Jenny (Ed.)Many science, technology, engineering, and math (STEM) community college students do not complete their degree, and these students are more likely to be women or in historically excluded racial or ethnic groups. In introductory courses, low grades can trigger this exodus. Implementation of high-impact study strategies could lead to increased academic performance and retention. The examination of study strategies rarely occurs at the community college level, even though community colleges educate approximately half of all STEM students in the United States who earn a bachelor’s degree. To fill this research gap, we studied students in two biology courses at a Hispanic-serving community college. Students were asked their most commonly used study strategies at the start and end of the semester. They were given a presentation on study skills toward the beginning of the semester and asked to self-assess their study strategies for each exam. We observed a significantly higher course grade for students who reported spacing their studying and creating drawings when controlling for demographic factors, and usage of these strategies increased by the end of the semester. We conclude that high-impact study strategies can be taught to students in community college biology courses and result in higher course performance.more » « less
-
Abstract Biology education research (BER), currently conducted mostly at four‐year colleges and universities, is changing the culture of teaching biology and improving student success. We are community college faculty participating in the NSF‐funded CC Bio INSITES network, getting training and support in BER to ask questions to improve student success in our highly diverse classes. Our research adapts and validates existing BER surveys and interventions in Hispanic‐serving college settings, with pre‐health professions’ students, and with traditionally underserved populations in STEM. BER projects serve assessment and program review goals common across many community colleges, and when implemented with high‐impact practices, BER measures the gains in student retention and success. We call for support to continue changing the culture of discipline‐based education research at community colleges.