skip to main content


Search for: All records

Creators/Authors contains: "Vengosh, Avner"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fertilizer utilization is critical for global food security. This study examines the occurrence of trace elements (TEs) and Sr isotope (87Sr/86Sr) variations in phosphate rocks and mineral fertilizers from a sample collection representative of major phosphate producing countries. We show high concentrations of several TEs in phosphate rocks (n=76) and their selective enrichment in phosphate fertilizers (n=40) of specific origin. Consistent with the concentrations in parent phosphate rocks, phosphate fertilizers from the U.S. and Middle East have substantially higher concentrations of U, Cd, Cr, V, and Mo than in fertilizers from China and India. Yet, fertilizers from China and India generally have higher concentrations of As. The 87Sr/86Sr in phosphate fertilizers directly mimic the composition of their source phosphate rocks, with distinctive higher ratios in fertilizers from China and India (0.70955–0.71939) relative to phosphate fertilizers from U.S. and Middle East (0.70748–0.70888). Potash fertilizers have lower Sr and TEs and higher 87Sr/86Sr (0.72017–0.79016), causing higher 87Sr/86Sr in mixed NPK-fertilizers. Selective extraction (Mehlich III) of soils from an experimental agricultural site shows relative enrichment of potentially plant-available P, Sr, and TEs in topsoil, which is associated with Sr isotope variation towards the 87Sr/86Sr of the local utilized phosphate fertilizer. 
    more » « less
    Free, publicly-accessible full text available May 9, 2025
  2. Phosphate fertilizers may contain elevated concentrations of toxic metals and metalloids and therefore, their excessive application can result in the accumulation of both phosphorus (P) and metal(loid)s in agricultural soils. This study aims to investigate the occurrence, distribution, and potential plant-availability of metal(loid)s originating from phosphate fertilizer in a long-term experimental field at the Tidewater Research Station in North Carolina, where topsoil (10-20 cm deep) and subsoil (up to 150 cm deep) samples were collected from five plots with consistent and individually different application rates of P-fertilizer since 1966. We conducted systematic analyses of P and metal(loid)s in bulk soils, in the plant available fraction, and in four sequentially extracted soil fractions (exchangeable, reducible, oxidizable, and residual). The results show that P content in topsoils were directly associated with the rate of P-fertilizer application (=1, p<0.05). Furthermore, P concentrations were highly correlated with concentrations of Cd, U, Cr, V, and As in the bulk topsoil (>0.58, p<0.05), as well as the potential plant-available fraction (>0.67, p<0.01), indicating the accumulation of the fertilizer-derived toxic metal(loid)s in the topsoil. Significant correlations (p<0.001) of metal(loid)s concentrations between the bulk soil and the potential plant-available fraction raises the possibility that P-fertilizer application could increase the accumulation of toxic metal(loid)s in plants, which could increase human exposure. Results from sequential leaching experiments revealed that large portions of the trace elements, in particular Cd, occur in the soluble (exchangeable and reducing) fractions of topsoil with higher P-fertilizer input, whereas the levels of redox-sensitive elements (As, V, U, Cr) were higher in the reducible and oxidizable fractions of the soils. Overall, the data presented in this study demonstrate the effect of long-term P-fertilizer application on the occurrence and accumulation of a wide range of toxic metal(loid)s in agricultural topsoil. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Phosphate rock bears both geologically and environmentally significant information. Rare earth elements and yttrium (i.e., REY) characteristics have been commonly used for reconstructing the redox conditions of depositional environments of and the effects of post-depositional diagenetic alteration on phosphate rock. In addition, phosphate rock is typically enriched in a range of trace elements such as uranium (U) and cadium (Cd) that can be dispersed as contaminants into the environment with phosphate mining and phosphate fertilizer application. Here we report the lead (Pb) isotope compositions combined with Pb and REY concentrations of both global sedimentary and igneous phosphate rocks, aiming to evalute the geological origin of phosphate rocks over time and the potential of using them for environmental tracing. Phopshate rocks samples analyzed in this study were sourced from major economic phosphate deposits in the world, including China, Southern Tethys (e.g., Morocco, Tunisia, Israel), the U.S., India, South Africa and Russia. Our results show a wide range of 208Pb/204Pb (35.70 to 60.58), 207Pb/204Pb (15.20 to 18.25), and 206Pb/204Pb (16.369 to 71.806) ratios in phosphate rocks, with sedimentary phosphate rocks being significantly more radiogenic than igneous rocks. The majority of the sedimentray phosphate rocks show a notable isotopic overprinting by non-radiogenic terrestrial Pb, except for those from Israel and Morocco that have the most radiogenic Pb isotope compositions. Correspondingly, phosphate rocks with more radiogenic Pb isotope ratios show relatively pristine seawater REY features, likely suggesting their preservation of the original oxic seawater conditions and/or minimal diagenetic alteration. In contrast, phosphate rocks with less radiogenic Pb isotope compositions show REY indications for more anoxic seawater redox conditions and/or greater diagenetic alteration. We further evaluate the potential utility of Pb isotopes for tracing the associated contamination with phosphate rock mining and fertilizer application in the environment. In most cases, the radiogenic Pb isotope composition of phosphate rocks and corresponding P-fertilizers is distinctive from both natural crustal Pb and major anthropogenic Pb sources (e.g., Pb ore deposits and pesticides), which provides a great advantage for applying Pb isotopes as environmental tracers for metal(loid) contamination from phosphate sources. The combination of Pb isotope ratios and REY proxies could further constrain the Pb source discrimination. Overall, this study provides new Pb isotopic and REY geochemical data on global phosphate rocks and fertilizers, which lays the groundwork for future regional and local studies on both their geological and environmental implications. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Abstract

    The transition from coal to natural gas and renewables in the electricity sector and the rise of unconventional shale gas extraction are likely to affect water usage throughout the US. While new natural-gas power plants use less water than coal-fired power plants, shale gas extraction through hydraulic fracturing has increased water utilization and intensity. We integrated water and energy use data to quantify the intensity of water use in the US throughout the electricity’s lifecycle. We show that in spite of the rise of water use for hydraulic fracturing, during 2013–2016 the overall annual water withdrawal (8.74 × 1010m3) and consumption (1.75 × 109m3) for coal were larger than those of natural gas (4.55 × 1010m3, and 1.07 × 109m3, respectively). We find that during this period, for every MWh of electricity that has been generated with natural gas instead of coal, there has been a reduction of ∼1 m3in water consumption and ∼40 m3in water withdrawal. Examining plant locations spatially, we find that only a small proportion of net electricity generation takes place in water stressed areas, while a large proportion of both coal (37%) and natural gas (50%) are extracted in water stressed areas. We also show that the growing contribution of renewable energy technologies such as wind and solar will reduce water consumption at an even greater magnitude than the transition from coal to natural gas, eliminating much of water withdrawals and consumption for electricity generation in the US.

     
    more » « less