skip to main content

Search for: All records

Creators/Authors contains: "Venkatesh, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, Santos et al. published an article titled “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance” in ACS Nano. In this article it was claimed that crystalline amino acid enantiomers can give rise to 1H-15N and 1H-13C cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra with different relative signal intensities. The authors attributed such differences to transient changes in T1 relaxation times resulting from an interaction between the electron spins and the radiofrequency contact pulses used in the CPMAS experiment, and discussed this proposed phenomenon in terms of the chirality-induced spin selectivity (CISS) effect. Wemore »disagree with the authors conclusion that the CISS effect plays a role in the different signal intensities observed in the CPMAS solid-state NMR spectra of crystalline enantiomers. Quantitative 13C CPMAS experiments on aspartic acid enantiomers demonstrate that CPMAS signal variations can likely be attributed to sample dependent differences in T1 relaxation times rather than any chirality effects.« less