skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Venkateswaran, Praveen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An increasing number of community spaces are being instrumented with heterogeneous IoT sensors and actuators that enable continuous monitoring of the surrounding environments. Data streams generated from the devices are analyzed using a range of analytics operators and transformed into meaningful information for community monitoring applications. To ensure high quality results, timely monitoring, and application reliability, we argue that these operators must be hosted at edge servers located in close proximity to the community space. In this paper, we present a Resource Efficient Adaptive Monitoring (REAM) framework at the edge that adaptively selects workflows of devices and operators to maintain adequate quality of information for the application at hand while judiciously consuming the limited resources available on edge servers. IoT deployments in community spaces are in a state of continuous flux that are dictated by the nature of activities and events within the space. Since these spaces are complex and change dynamically, and events can take place under different environmental contexts, developing a one-size-fits-all model that works for all types of spaces is infeasible. The REAM framework utilizes deep reinforcement learning agents that learn by interacting with each individual community spaces and take decisions based on the state of the environment in each space and other contextual information. We evaluate our framework on two real-world testbeds in Orange County, USA and NTHU, Taiwan. The evaluation results show that community spaces using REAM can achieve > 90% monitoring accuracy while incurring ~ 50% less resource consumption costs compared to existing static monitoring and Machine Learning driven approaches. 
    more » « less