skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vergniory, Maia G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most striking signatures of Weyl fermions in solid-state systems is their surface Fermi arcs. Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these “internal Fermi arcs.” We show that internal Fermi arcs can exhibit transport signatures, and we propose two probes: quantum oscillations and a quantized chiral magnetic current. We propose merohedrally twinned B20 materials as candidates to host internal Fermi arcs, verified through both model and calculations. Our theoretical investigation sheds light on the topological features and motivates experimental studies on the intriguing physics of internal Fermi arcs. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. There is extensive current interest in electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for a Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap, as it should be based on general considerations. Our work sets the stage for further understandings of the rich interplay among topology, symmetry, and strong correlations. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  4. Abstract Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Illuminating materials with lasers can create intriguing magnetic and topological states of matter.. 
    more » « less