skip to main content

Search for: All records

Creators/Authors contains: "Verhaaren, Christopher B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.

  2. A bstract Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this frame-work to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.