Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Understanding models is important for engineering students, but not often taught explicitly in firstyear courses. Although there are many types of models in engineering, studies have shown that engineering students most commonly identify prototyping or physical models when asked about modeling. In order to evaluate students’ understanding of different types of models used in engineering and the effectiveness of interventions designed to teach modeling, a survey was developed. This paper describes development of a framework to categorize the types of engineering models that firstyear engineering students discuss based on both previous literature and students’ responses to survey questions about models. In Fall 2019, the survey was administered to firstyear engineering students to investigate their awareness of types of models and understanding of how to apply different types of models in solving engineering problems. Students’ responses to three questions from the survey were analyzed in this study: 1. What is a model in science, technology, engineering, and mathematics (STEM) fields?, 2. List different types of models that you can think of., and 3. Describe each different type of model you listed. Responses were categorized by model type and the framework was updated through an iterative coding process. After four rounds ofmore »

To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of modeling skills include physical, mathematical, computational, graphing, and financial. However, many students struggle to define and form relevant models in their engineering courses. We are hoping that the students are able to better define and apply models in their engineering courses after they have completed the MATLAB and/or CATIA courses. We also are hoping to see a difference in model identification between the MATLAB and CATIA courses. All students in the MATLAB and CATIA courses must be able to understand and create models in order to solve problems and think critically in engineering. Students need foundational knowledge about basic modeling skills that will be effective in their course. The goal is for students to create an approach to help them solve problems logically and apply different modeling skills.

Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students’ solutions to a complex, openended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students’ solutions to an openended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group  these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group  these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common openended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version hadmore »

All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To be more successful in their studies and careers, students need a foundational knowledge about models. An adaptable approach can help students develop their modeling skills across a variety of modeling types, including physical models, mathematical models, logical models, and computational models. Physical models (e.g., prototypes) are the most common type of models that engineering students identify and discuss during the design process. There is a need to explicitly focus on varying types of models, model application, and model development in the engineering curriculum, especially on mathematical and computational models. This NSF project proposes two approaches to creating a holistic modeling environment for learning at two universities. These universities require different levels of revision to the existing firstyear engineering courses or programs. The proposed approaches change to a unified language and discussion around modeling with the intent of contextualizing modeling as a fundamental tool within engineering. To evaluate student learning on modeling in engineering, we conducted pre and post surveys across three different firstyear engineering courses at these two universities with different student demographics. The comparison between the pre andmore »

Background To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of models include physical, mathematical, computational, graphical, and financial, which are used both in academics, research, and industry. However, many students struggle to define, create, and apply relevant models in their engineering courses. Purpose (Research Questions) The research questions investigated in this study are: (1) What types of models do engineering students identify before and after completing a firstyear engineering course? (2) How do students’ responses compare across different courses (a graphical communications course  EGR 120 and a programming course  EGR 115), and sections? Design/Methods The data used for this study were collected in two introductory firstyear engineering courses offered during Fall 2019, EGR 115 and EGR 120. Students’ responses to a survey about modeling were qualitatively analyzed. The survey was given at the beginning and the end of the courses. The data analyzed consisted of 560 pre and post surveys for EGR 115 and 384 pre and post surveys for EGR 120. Results Once the analysis is complete, we are hoping to find that the students can better define and apply models in their engineering coursesmore »

This complete research paper describes the impact of a modeling intervention on firstyear engineering students’ modeling skills in an introductory computer programming course. Five sections of the firstyear engineering introductory programming course at a private, STEM+Business institution were revised to center around modeling concepts. These five sections made up the experimental group for this study. The comparison group consisted of four sections of the course that were not revised. Students in all these sections were given two different versions of a modeling problem two times in the semester to test their progress in gaining modeling skills. Each version required two submissions – a written solution and a coded solution. The assessment of these four submissions based on the three established dimensions of modeling were quantitatively analyzed in this study. The three dimensions within mathematical modeling that were the focus of this study were mathematical model complexity, modifiability, and reusability. Mathematical model complexity is being able to address the complexity of the problem. Modifiability addresses the generalizability of the model solution. Reusability is showing an understanding of the problem and the user. Statistical analysis showed that students in the experimental group had more gains in their demonstrated modeling abilities across allmore »