Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dynamic networks containing multiple bond types within a continuous network grant engineers another design parameter – relative bond fraction – by which to tune storage and dissipation of mechanical energy. However, the mechanisms governing emergent properties are difficult to deduce experimentally. Therefore, we here employ a network model with prescribed fractions of dynamic and stable bonds to predict relaxation characteristics of hybrid networks. We find that during stress relaxation, predominantly dynamic networks can exhibit long-term moduli through conformationally inhibited relaxation of stable bonds due to exclusion interactions with neighboring chains. Meanwhile, predominantly stable networks exhibit minor relaxation through non-affine reconfiguration of dynamic bonds. Given this, we introduce a single fitting parameter, ξ , to Transient Network Theory via a coupled rule of mixture, that characterizes the extent of stable bond relaxation. Treating ξ as a fitting parameter, the coupled rule of mixture's predicted stress response not only agrees with the network model's, but also unveils likely micromechanical traits of gels hosting multiple bond dissociation timescales.Free, publicly-accessible full text available April 12, 2024
-
Maini, Philip K. (Ed.)Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capturemore »
-
Abstract Viscoelastic material behavior in polymer systems largely arises from dynamic topological rearrangement at the network level. In this paper, we present a physically motivated microsphere formulation for modeling the mechanics of transient polymer networks. By following the directional statistics of chain alignment and local chain stretch, the transient microsphere model (TMM) is fully anisotropic and micro-mechanically based. Network evolution is tracked throughout deformation using a Fokker–Planck equation that incorporates the effects of bond creation and deletion at rates that are sensitive to the chain-level environment. Using published data, we demonstrate the model to capture various material responses observed in physical polymers.
-
Abstract Soft, worm-like robots show promise in complex and constrained environments due to their robust, yet simple movement patterns. Although many such robots have been developed, they either rely on tethered power supplies and complex designs or cannot move external loads. To address these issues, we here introduce a novel, maggot-inspired, magnetically driven “mag-bot” that utilizes shape memory alloy-induced, thermoresponsive actuation and surface pattern-induced anisotropic friction to achieve locomotion inspired by fly larvae. This simple, untethered design can carry cargo that weighs up to three times its own weight with only a 17% reduction in speed over unloaded conditions thereby demonstrating, for the first time, how soft, untethered robots may be used to carry loads in controlled environments. Given their small scale and low cost, we expect that these mag-bots may be used in remote, confined spaces for small objects handling or as components in more complex designs.
-
Polymer networks consisting of a mixture of chemical and physical cross-links are known to exhibit complex time-dependent behaviour due to the kinetics of bond association and dissociation. In this article, we highlight and compare two recent physically based constitutive models that describe the nonlinear viscoelastic behaviour of such transient networks. These two models are developed independently by two groups of researchers using different mathematical formulations. Here, we show that this difference can be attributed to different viewpoints: Lagrangian versus Eulerian. We establish the equivalence of the two models under the special situation where chains obey Gaussian statistics and steady-state bond dynamics. We provide experimental data demonstrating that both models can accurately predict the time-dependent uniaxial behaviour of a poly(vinylalcohol) dual cross-link hydrogel. We review the advantages and disadvantages of both approaches in applications and close by discussing a list of open challenges and questions regarding the mathematical modelling of soft, viscoelastic networks.
-
Dynamic networks contain crosslinks that re-associate after disconnecting, imparting them with viscoelastic properties. While continuum approaches have been developed to analyze their mechanical response, these approaches can only describe their evolution in an average sense, omitting local, stochastic mechanisms that are critical to damage initiation or strain localization. To address these limitations, we introduce a discrete numerical model that mesoscopically coarse-grains the individual constituents of a dynamic network to predict its mechanical and topological evolution. Each constituent consists of a set of flexible chains that are permanently cross-linked at one end and contain reversible binding sites at their free ends. We incorporate nonlinear force–extension of individual chains via a Langevin model, slip-bond dissociation through Eyring's model, and spatiotemporally-dependent bond attachment based on scaling theory. Applying incompressible, uniaxial tension to representative volume elements at a range of constant strain rates and network connectivities, we then compare the mechanical response of these networks to that predicted by the transient network theory. Ultimately, we find that the idealized continuum approach remains suitable for networks with high chain concentrations when deformed at low strain rates, yet the mesoscale model proves necessary for the exploration of localized stochastic events, such as variability of the bondmore »