skip to main content

Search for: All records

Creators/Authors contains: "Vielzeuf, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the low-redshift cosmic web. In this analysis, we cross-correlated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set (∼5000 deg2), expanding on previous measurements that used Y1 catalogues (∼1300 deg2). Given the increased statistical power compared to Y1 data, we report a 6.6σ detection of negative CMB convergence (κ) imprints using approximately 3600 voids detected from a redMaGiC luminous red galaxy sample. However, the measured signal is lower than expected from the MICE N-body simulation that is based on the ΛCDM model (parameters Ωm = 0.25, σ8 = 0.8), and the discrepancy is associated mostly with the void centre region. Considering the full void lensing profile, we fit an amplitude $A_{\kappa }=\kappa _{{\rm DES}}/\kappa _{{\rm MICE}}$ to a simulation-based template with fixed shape and found a moderate 2σ deviation in the signal with Aκ ≈ 0.79 ± 0.12. We also examined the WebSky simulation that is based on a Planck 2018 ΛCDM cosmology, but the results were even less consistent given the slightly higher matter density fluctuations than in MICE. We then identified superclusters in the DES and the MICE catalogues,more »and detected their imprints at the 8.4σ level; again with a lower-than-expected Aκ = 0.84 ± 0.10 amplitude. The combination of voids and superclusters yields a 10.3σ detection with an Aκ = 0.82 ± 0.08 constraint on the CMB lensing amplitude, thus the overall signal is 2.3σ weaker than expected from MICE.

    « less
  2. ABSTRACT The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{\rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and $r_{\rm cc}=1.06^{+0.13}_{-0.12}$ for $12 \, h^{-1}{\rm \,\,Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and rcc = 1.03 ± 0.11 for $12 \, h^{-1}{\rm \,\,Mpc}$. The resultingmore »values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation.« less
  3. ABSTRACT The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES metacalibration sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters $\mu _0=-0.37^{+0.47}_{-0.45}$ and $\Sigma _0=0.078^{+0.078}_{-0.082}$. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 redMaGiC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectivelymore »breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST.« less
    Free, publicly-accessible full text available December 10, 2022
  4. ABSTRACT We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate with a different model for the prior probability of the map: Kaiser–Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realistic ΛCDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.