skip to main content

Search for: All records

Creators/Authors contains: "Viero, Marco P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present the deconvolved distribution estimator (DDE), an extension of the voxel intensity distribution (VID), in the context of future observations proposed as part of the CO Mapping Array Project (COMAP). The DDE exploits the fact that the observed VID is a convolution of correlated signal intensity distributions and uncorrelated noise or interloper intensity distributions. By deconvolving the individual VID of two observables away from their joint VID in a Fourier-space operation, the DDE suppresses sensitivity to interloper emission while maintaining sensitivity to correlated components. The DDE thus improves upon the VID by reducing the relative influence of uncorrelated noise and interloper biases, which is useful in the context of COMAP observations that observe different rotational transitions of CO from the same comoving volume in different observing frequency bands. Fisher forecasts suggest that the theoretical sensitivity in the DDE allows significant improvements in constraining power compared to either the cross power spectrum or the individual VID data, and matches the constraining power of the combination of all other one- and two-point summary statistics. Future work should further investigate the covariance and model-dependent behaviour of this novel one-point cross-correlation statistic.

  2. Abstract Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project and the CO(1–0) line-intensity field at z ∼ 3 serving as our primary case study, we expect a ∼10% attenuation of the spherically averaged power spectrum on average at relevant scales of k ≈ 0.2–0.3 Mpc −1 compared to ∼25% for the interferometric Millimetre-wave Intensity Mapping Experiment targeting shot noise from CO lines at z ∼ 1–5 at scales of k ≳ 1 Mpc −1 . We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening and find that while an approximationmore »using a single effective velocity scale is sufficient for spherically averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.« less
  3. Abstract We present the current state of models for the z ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connection and previous CO (1–0) observations. The Pathfinder early science data spanning wavenumbers k = 0.051–0.62 Mpc −1 represent the first direct 3D constraint on the clustering component of the CO (1–0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude A clust ≲ 70 μ K 2 greatly improves on the indirect upper limit of 420 μ K 2 reported from the CO Power Spectrum Survey (COPSS) measurement at k ∼ 1 Mpc −1 . The COMAP limit excludes a subset of models from previous literature and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity–bias product, Tb 2 ≲ 50 μ K 2 , and the cosmic molecular gas density, ρ H2 < 2.5 × 10 8 Mmore »⊙ Mpc −3 (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the 5 yr Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise ratio of 9–17. Between then and now, we also expect to detect the CO–galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star formation and galaxy evolution history.« less
    Free, publicly-accessible full text available July 1, 2023
  4. Abstract The CO Mapping Array Project (COMAP) aims to use line-intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1–0) emission from z = 2.4–3.4 and a fainter contribution from CO(2–1) at z = 6–8, the Pathfinder is surveying 12 deg 2 in a 5 yr observing campaign to detect the CO signal from z ∼ 3. Using data from the first 13 months of observing, we estimate P CO ( k ) = −2.7 ± 1.7 × 10 4 μ K 2 Mpc 3 on scales k = 0.051 −0.62 Mpc −1 , the first direct three-dimensional constraint on the clustering component of the CO(1–0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature bias product) of Tb 2 < 49 μ K 2 , nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecastmore »a detection of the power spectrum after 5 yr with signal-to-noise ratio (S/N) 9–17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO–galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR.« less
    Free, publicly-accessible full text available July 1, 2023
  5. Abstract

    We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoRsupplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1–0) and CO(2–1) at reionization redshifts (z∼ 5–8) in addition to providing a significant boost to thez∼ 3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoRmeasurement. We carry out the most detailed forecast to date of an intensity mapping cross correlation, and find that five out of the six models we consider yield signal to noise ratios (S/Ns) ≳ 20 for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoRcan make a detailed measurement of the cosmic molecular gas history fromz∼ 2–8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, formore »the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.

    « less
  6. Abstract

    Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna and an instantaneous 26–34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO (J= 1–0) fromz∼ 3. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will guide the design of the next generations of experiments.