skip to main content

Search for: All records

Creators/Authors contains: "Villa, U."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Analysis of tectonic and earthquake-cycle associated deformation of the crust can provide valuable insights into the underlying deformation processes including fault slip. How those processes are expressed at the surface depends on the lateral and depth variations of rock properties. The effect of such variations is often tested by forward models based on a priori geological or geophysical information. Here, we first develop a novel technique based on an open-source finite-element computational framework to invert geodetic constraints directly for heterogeneous media properties. We focus on the elastic, coseismic problem and seek to constrain variations in shear modulus and Poisson’s ratio, proxies for the effects of lithology and/or temperature and porous flow, respectively. The corresponding nonlinear inversion is implemented using adjoint-based optimization that efficiently reduces the cost function that includes the misfit between the calculated and observed displacements and a penalty term. We then extend our theoretical and numerical framework to simultaneously infer both heterogeneous Earth’s structure and fault slip from surface deformation. Based on a range of 2-D synthetic cases, we find that both model parameters can be satisfactorily estimated for the megathrust setting-inspired test problems considered. Within limits, this is the case even in the presence of noise and if the fault geometry is not perfectly known. Our method lays the foundation for a future reassessment of the information contained in increasingly data-rich settings, for example, geodetic GNSS constraints for large earthquakes such as the 2011 Tohoku-oki M9 event, or distributed deformation along plate boundaries as constrained from InSAR.

    more » « less

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

    more » « less
  3. Recent years have seen a massive explosion of datasets across all areas of science and engineering. The central questions are: How do we optimally learn from data through the lens of models? And how do we account for uncertainties in both data and models? These questions can be mathematically framed as Bayesian inverse problems. While powerful and sophisticated approaches have been developed to tackle these problems, such methods are often challenging to implement and typically require first and second order derivatives that are not always available in existing computational models. In this talk, we present an extensible software framework MUQ-hIPPYlib that overcomes these challenges by providing access to state-of-the-art algorithms that offer the capability to solve complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering areas. 
    more » « less