skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Villarini, Gabriele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections.

     
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  2. Abstract

    Understanding changes in the hazard component of climate risk is important to inform societal resilience planning in a changing climate. Here, we examine local changes in wind speed, rainfall, and flooding related to tropical cyclones (TCs) and compare them across statistical and dynamical modeling approaches. Our focus region is the Delaware River Basin, located in the northeastern United States. We pair event‐based downscaling with large ensemble climate model information to capture the details of extreme TC wind, rain, and flooding, and their likelihood, in a changing climate. We identify local TCs in the Community Earth System Model 2 Large Ensemble (CESM2‐LENS). We find fewer TCs in the future, but these future storms have higher wind speeds and are wetter. We also find that TCs produce heavier 3‐day precipitation distributions than all other summertime weather events, with TCs constituting a larger percentage of the upper tail of the full precipitation distribution. With this information, we identify a small collection of 200‐year return events and compare the resulting TC rain and wind across dynamical and statistical downscaling methods. We find that dynamical downscaling produces peak rain rates far higher than CESM or the statistical downscaling method. It can also produce quite different future changes in precipitation totals for the small set of events considered here. This leads to vastly different flood responses. Overall, our results highlight the need to interpret future changes of event‐based simulations in the context of downscaling method limitations.

     
    more » « less
  3. Abstract

    The detection of nonstationarities in partial duration time series (PDS) depends on several factors, including the length of the time series, the selected statistical test, and the heaviness of the tail of the distribution. Because of the more limited attention received in the literature when compared to the trend detection on block maxima variables, we perform a Monte Carlo simulation study to evaluate the performance of different approaches: Spearman's rho, Mann–Kendall, ordinary least squares (OLS), Sen's slope estimator (SEN), and the nonstationary generalized Pareto distribution fit to identify the presence of trends in PDS records characterized by different sample sizes (n), shape parameter (ξ) and degrees of nonstationarity. The results point to a power gain for all tests by increasingnand the degree of nonstationarity and by reducing ξ. The use of a nonparametric test is recommended in samples with a high positive skew. Furthermore, the use of sampling rates greater than one to increase the PDS sample size is encouraged, especially when dealing with small records. The use of SEN to estimate the magnitude of a trend is preferable over OLS due to its slightly smaller probability of occurrence of type S error when ξ is positive.

     
    more » « less
  4. Stalagmites and climate models reveal ITCZ shifts drove concurrent changes in Australian tropical cyclone and monsoon rainfall. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Atlantic hurricanes are a major hazard to life and property, and a topic of intense scientific interest. Historical changes in observing practices limit the utility of century-scale records of Atlantic major hurricane frequency. To evaluate past changes in frequency, we have here developed a homogenization method for Atlantic hurricane and major hurricane frequency over 1851–2019. We find thatrecordedcentury-scale increases in Atlantic hurricane and major hurricane frequency, and associated decrease in USA hurricanes strike fraction, are consistent with changes in observing practices and not likely a true climate trend. After homogenization, increases in basin-wide hurricane and major hurricane activity since the 1970s are not part of a century-scale increase, but a recovery from a deep minimum in the 1960s–1980s. We suggest internal (e.g., Atlantic multidecadal) climate variability and aerosol-induced mid-to-late-20th century major hurricane frequency reductions have probably masked century-scale greenhouse-gas warming contributions to North Atlantic major hurricane frequency.

     
    more » « less
  7. null (Ed.)
  8. Abstract

    Coastal areas are subject to the joint risk associated with rainfall‐driven flooding and storm surge hazards. To capture this dependency and the compound nature of these hazards, bivariate modelling represents a straightforward and easy‐to‐implement approach that relies on observational records. Most existing applications focus on a single tide gauge–rain gauge/streamgauge combination, limiting the applicability of bivariate modelling to develop high‐resolution space–time design events that can be used to quantify the dynamic, that is, varying in space and time, compound flood hazard in coastal basins. Moreover, there is a need to recognize that not all extreme events always come from a single population, but can reflect a mixture of different generating mechanisms. Therefore, this paper describes an empirical approach to develop design storms with high‐resolution in space and time (i.e., ~5 km and hourly) for different joint annual exceedance probabilities. We also stratify extreme rainfall and storm surge events depending on whether they were caused by tropical cyclones (TCs) or not. We find that there are significant differences between the TC and non‐TC populations, with very different dependence structures that are missed if we treat all the events as coming from a single population. While we apply this methodology to one basin near Houston, Texas, our approach is general enough to make it applicable for any coastal basin exposed to compounding flood hazards from storm surge and rainfall‐induced flooding.

     
    more » « less