Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ContextUnoccupied aerial systems/vehicles (UAS/UAV, a.k.a. drones) have become an increasingly popular tool for ecological research. But much of the recent research is concerned with developing mapping and detection approaches, with few studies attempting to link UAS data to ecosystem processes and function. Landscape ecologists have long used high resolution imagery and spatial analyses to address ecological questions and are therefore uniquely positioned to advance UAS research for ecological applications. ObjectivesThe review objectives are to: (1) provide background on how UAS are used in landscape ecological studies, (2) identify major advancements and research gaps, and (3) discuss ways to better facilitate the use of UAS in landscape ecology research. MethodsWe conducted a systematic review based on PRISMA guidelines using key search terms that are unique to landscape ecology research. We reviewed only papers that applied UAS data to investigate questions about ecological patterns, processes, or function. ResultsWe summarize metadata from 161 papers that fit our review criteria. We highlight and discuss major research themes and applications, sensors and data collection techniques, image processing, feature extraction and spatial analysis, image fusion and satellite scaling, and open data and software. ConclusionWe observed a diversity of UAS methods, applications, and creative spatial modeling and analysis approaches. Key aspects of UAS research in landscape ecology include modeling wildlife micro-habitats, scaling of ecosystem functions, landscape and geomorphic change detection, integrating UAS with historical aerial and satellite imagery, and novel applications of spatial statistics.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non‐forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low‐stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjustedR2of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave‐one‐out cross‐validation of 3.9%. Biomass per‐unit‐of‐height was similarwithinbut differentamong,plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much‐needed information required to calibrate and validate the vegetation models and satellite‐derived biomass products that are essential to understand vulnerable and understudied non‐forested ecosystems around the globe.more » « less
An official website of the United States government
