skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Virginia, Ross_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Organisms that undergo a shift in ontogeny and habitat type often change their spatial distribution throughout their life cycle, but how this affects population dynamics remains poorly understood.We examined spatial and temporal patterns inAedes nigripesabundance, a widespread univoltine Arctic mosquito species (Diptera: Culicidae), hypothesizing that the spatial distribution of adults would be closely tied to aquatic habitat.We tracked adult densities ofA. nigripesnear Kangerlussuaq, Greenland using emergence traps, CO2‐baited traps, and sweep‐nets.In back‐to‐back years of sampling (2017 and 2018) we found two‐fold variation in overall abundance.Adults were spatially patchy when first emerging from aquatic habitats but within a week, mean capture rates for host‐seeking adult females were similar across locations, even in places far from larval habitat.Daily variation in mosquito captures was primarily explained by weather, with virtually no mosquito activity when temperatures averaged less than 8°C or wind speeds exceeded 6 m/s. Gravid females (3% of resting adults) were spatially patchy on the landscape, but not always in the same places where most adults emerged.The spatial distribution of adults is quickly uncoupled from the spatial distribution of larvae becauseA. nigripesfemales may disperse far from their natal habitats in search of a blood‐meal and high‐quality oviposition habitat. 8. This research highlights the value of studying ecological processes that act at disparate life stages for understanding the population biology of organisms with complex life cycles. 
    more » « less
  2. Summary Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near‐surface air at concentrations ranging from 2,431 to 28,355 cells m−3of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon‐specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life. 
    more » « less