skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vishwanath, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural oscillations in the form of electroencephalogram (EEG) can reveal underlying brain functions, such as cognition, memory, perception, and consciousness. A comprehensive EEG computational model provides not only a stochastic procedure that directly generates data but also insights to further understand the neurological mechanisms. Here, we propose a generative and inference approach that combines the complementary benefits of probabilistic graphical models and generative adversarial networks (GANs) for EEG signal modeling. We investigate the method’s ability to jointly learn coherent generation and inverse inference models on the CHI-MIT epilepsy multi-channel EEG dataset. We further study the efficacy of the learned representations in epilepsy seizure detection formulated as an unsupervised learning problem. Quantitative and qualitative experimental results demonstrate the effectiveness and efficiency of our approach. 
    more » « less