skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viswanathan, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. STMC is a statistical model checker that uses antithetic and stratified sampling techniques to reduce the number of samples and, hence, the amount of time required before making a decision. The tool is capable of statistically verifying any black-box probabilistic system that PRISM can simulate, against probabilistic bounds on any property that PRISM can evaluate over individual executions of the system. We have evaluated our tool on many examples and compared it with both symbolic and statistical algorithms. When the number of strata is large, our algorithms reduced the number of samples more than 3 times on average. Furthermore, being a statistical model checker makes STMC able to verify models that are well beyond the reach of current symbolic model checkers. On large systems (up to 1014 states) STMC was able to check 100% of benchmark systems, compared to existing symbolic methods in PRISM, which only succeeded on 13% of systems. The tool, installation instructions, benchmarks, and scripts for running the benchmarks are all available online as open source. 
    more » « less
  2. We identify a decidable synthesis problem for a class of pro- grams of unbounded size with conditionals and iteration that work over infinite data domains. The programs in our class use uninterpreted functions and relations, and abide by a restriction called coherence that was recently identified to yield decidable verification. We formulate a powerful grammar-restricted (syntax-guided) synthesis problem for coherent uninterpreted programs, and we show the problem to be decidable, identify its precise complexity, and also study several variants of the problem. 
    more » « less