- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Vliet, Kent_A (2)
-
Abzhanov, Arhat (1)
-
Holliday, Casey_M (1)
-
Morris, Zachary_S (1)
-
Pierce, Stephanie_E (1)
-
Porter, William_Ruger (1)
-
Witmer, Lawrence_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The dorsoventrally flattened skull typifies extant Crocodylia perhaps more than any other anatomical feature and is generally considered an adaptation for semi‐aquatic feeding. Although the evolutionary origins of caniofacial flattening have been extensively studied, the developmental origins have yet to be explored. To understand how the skull table and platyrostral snout develop, we quantified embryonic development and post‐hatching growth (ontogeny) of the crocodylian skull in lateral view using geometric morphometrics. Our dataset (n = 103) includes all but one extant genus and all of the major ecomorphs, including the extremely slender‐snoutedGavialisandTomistoma. Our analysis reveals that the embryonic development of the flattened skull is remarkably similar across ecomorphs, including the presence of a conserved initial embryonic skull shape, similar to prior analysis of dorsal snout shape. Although differences during posthatching ontogeny are recovered among ecomorphs, embryonic patterns are not distinct, revealing an important shift in developmental rate near hatching. In particular, the flattened skull table is achieved by the end of embryonic development with no changes after hatching. Further, the rotation of skull roof and facial bones during development is critical for the stereotypical flatness of the crocodylian skull. Our results suggest selection on hatchling performance and constraints on embryonic skull shape may have been important in this pattern of developmental conservation. The appearance of aspects of cranial flatness among Jurassic stem crocodylians suggests key aspects of these cranial developmental patterns may have been conserved for over 200 million years.more » « less
-
Holliday, Casey_M; Porter, William_Ruger; Vliet, Kent_A; Witmer, Lawrence_M (, The Anatomical Record)ABSTRACT The attachments of jaw muscles are typically implicated in the evolution and shape of the dorsotemporal fenestra on the skull roof of amniotes. However, the dorsotemporal fenestrae of many archosaurian reptiles possess smooth excavations rostral and dorsal to the dorsotemporal fossa which closely neighbors the dorsotemporal fenestra and jaw muscle attachments. Previous research has typically identified this region, here termed the frontoparietal fossa, to also have attachment surfaces for jaw‐closing muscles. However, numerous observations of extant and extinct archosaurs described here suggest that other tissues are instead responsible for the size and shape of the frontoparietal fossa. This study reviewed the anatomical evidence that support soft‐tissue hypotheses of the frontoparietal fossa and its phylogenetic distribution among sauropsids. Soft‐tissue hypotheses (i.e., muscle, pneumatic sinus, vascular tissues) were analyzed using anatomical, imaging andin vivothermography techniques within a phylogenetic framework using extant and extinct taxa to determine the inferential power underlying the reconstruction of the soft tissues in the skull roofs of dinosaurs, pseudosuchians, and other reptiles. Relevant anatomical features argue for rejection of the default hypothesis—that the fossa was muscular—due to a complete lack of osteological correlates reflective of muscle attachment. The most‐supported inference of soft tissues is that the frontoparietal fossa contained a large vascular structure and adipose tissue. Despite the large sizes and diverse morphologies of these fossae found among dinosaur taxa, these data suggest that non‐avian dinosaurs had the anatomical foundation to support physiologically significant vascular devices and/or vascular integumentary structures on their skull roofs. Anat Rec, 303:1060–1074, 2020. © 2019 Wiley Periodicals, Inc.more » « less
An official website of the United States government
