We present13CO(
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract J = 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF 60/F 100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r 25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r 25, the azimuthally averaged increases with the star formationmore » -
Shocks and torques produced by non-axisymmetric structures such as spiral arms and bars may transport gas to galaxy central regions. We test this hypothesis by studying the dependence of the concentration of CO luminosity ( C CO ) and molecular gas ( C mol ) and the star formation rate ( C SFR ) in the central ∼2 kpc on the strength of non-axisymmetric disk structure using a sample of 57 disk galaxies selected from the EDGE-CALIFA survey. The C mol is calculated using a CO-to-H 2 conversion factor that decreases with higher metallicity and higher stellar surface density. We find that C mol is systematically 0.22 dex lower than C CO . We confirm that high C mol and strong non-axisymmetric disk structure are more common in barred galaxies than in unbarred galaxies. However, we find that spiral arms also increase C mol . We show that there is a good correlation between C mol and the strength of non-axisymmetric structure (which can be due to a bar, spiral arms, or both). This suggests that the stronger the bars and spirals, the more efficient the galaxy is at transporting cold gas to its center. Despite the small subsample size,more »Free, publicly-accessible full text available October 1, 2023
-
Abstract We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity,
I CO, and mid-IR intensity,I MIR, at 8, 12, 22, and 24μ m. TheI COversusI MIRrelationship is reasonably described by a power law with slopes 0.7–1.2 and normalizationI CO∼ 1 K km s−1atI MIR∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that , in good agreement with other work. The 8μ m and 12μ m bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24μ m, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M ⋆) and anticorrelates with star formation rate/M ⋆. At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopesmore » -
ABSTRACT We present an empirical relation between the cold gas surface density (Σgas) and the optical extinction (AV) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the Σgas–AV relation on global, radial, and kpc (spaxel) scales. We determine AV from the Balmer decrement (H α/H β). We find that the best fit for this relation is $\Sigma _{\rm gas}\,(\rm {M_\odot \,pc}^{-2}) \sim 26 \times {\rm \mathit{ A}_\mathit{ V}} \,(\rm mag)$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the Σgas/AV ratio on radial and spaxel scales as a function of $\mathrm{EW(H\,\alpha)}$. We find that at larger values of $\mathrm{EW({H\,\alpha })}$ (i.e. actively star-forming regions) this ratio tends to converge to twice the value expected for a foreground dust screen geometry (∼30 $\mathrm{M_{\odot } \, pc^{-2} \, mag^{-1}}$). On radial scales, we domore »