Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability.more » « less
-
Macqueen, D (Ed.)Abstract Spider silks are renowned for their high-performance mechanical properties. Contributing to these properties are proteins encoded by the spidroin (spider fibroin) gene family. Spidroins have been discovered mostly through cDNA studies of females based on the presence of conserved terminal regions and a repetitive central region. Recently, genome sequencing of the golden orb-web weaver, Trichonephila clavipes, provided a complete picture of spidroin diversity. Here, we refine the annotation of T. clavipes spidroin genes including the reclassification of some as non-spidroins. We rename these non-spidroins as spidroin-like (SpL) genes because they have repetitive sequences and amino acid compositions like spidroins, but entirely lack the archetypal terminal domains of spidroins. Insight into the function of these spidroin and SpL genes was then examined through tissue- and sex-specific gene expression studies. Using qPCR, we show that some silk genes are upregulated in male silk glands compared to females, despite males producing less silk in general. We also find that an enigmatic spidroin that lacks a spidroin C-terminal domain is highly expressed in silk glands, suggesting that spidroins could assemble into fibers without a canonical terminal region. Further, we show that two SpL genes are expressed in silk glands, with one gene highly evolutionarily conserved across species, providing evidence that particular SpL genes are important to silk production. Together, these findings challenge long-standing paradigms regarding the evolutionary and functional significance of the proteins and conserved motifs essential for producing spider silks.more » « less
An official website of the United States government
