- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ampuero, A. (1)
-
Apaéstegui, J. (1)
-
Azevedo, V. (1)
-
Carriquiry, J D (1)
-
Charles, C D (1)
-
Cordeiro, R. C. (1)
-
Cruz, F. W. (1)
-
Duprey, N N (1)
-
Espinoza, J. C. (1)
-
Foreman, A D (1)
-
Haug, G H (1)
-
Marconi, D (1)
-
Martins, V. T. S. (1)
-
Martínez-García, A (1)
-
Mayta, V. C. (1)
-
Novello, V. F. (1)
-
Rabenstein, R (1)
-
Reyes-Bonilla, H (1)
-
Rohr, M (1)
-
Rubach, F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The impact of global warming on the ocean’s oxygen-deficient zones (ODZs) is uncertain, partly because of a lack of data on past changes. We report monthly resolved records of coral skeleton–bound nitrogen isotopes (CS-δ15N) to reconstruct denitrification in the Eastern Tropical North Pacific (ETNP) ODZ over the last 80 years. The data indicate strong decadal variation in ETNP denitrification, with maxima during the cool North Pacific phase of Pacific Decadal Variability. The maxima in denitrification (and thus oxygen deficiency) were likely due to stronger upwelling that enhanced productivity leading to greater oxygen demand in the thermocline. Prior findings of multidecadal-to-centennial ODZ trends were likely biased by this variability. ODZ evolution over the next century will depend on how global warming interacts with the decadal oscillations.more » « less
-
Ampuero, A.; Stríkis, N. M.; Apaéstegui, J.; Vuille, M.; Novello, V. F.; Espinoza, J. C.; Cruz, F. W.; Vonhof, H.; Mayta, V. C.; Martins, V. T. S.; et al (, Journal of Geophysical Research: Atmospheres)Abstract In the Amazon basin, intense precipitation recycling across the forest significantly modifies the isotopic composition of rainfall (δ18O, δD). In the tropical hydrologic cycle, such an effect can be identified through deuterium excess (dxs), yet it remains unclear what environmental factors control dxs, increasing the uncertainty of dxs‐based paleoclimate reconstructions. Here we present a 4‐year record of the isotopic composition of rainfall, monitored in the northwestern Amazon basin. We analyze the isotopic variations as a function of the air mass history, based on atmospheric back trajectory analyses, satellite observations of precipitation upstream, leaf area index, and simulated moisture recycling along the transport pathway. We show that the precipitation recycling in the forest exerts a significant control on the isotopic composition of precipitation in the northwestern Amazon basin, especially on dxs during the dry season (r= 0.71). Applying these observations to existing speleothem and pollen paleorecords, we conclude that winter precipitation increased after the mid‐Holocene, as the expansion of the forest allowed for more moisture recycling. Therefore, forest effects should be considered when interpreting paleorecords of past precipitation changes.more » « less
An official website of the United States government
