Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract During glacial terminations, massive iceberg discharges and meltwater pulses in the North Atlantic triggered a shutdown of the Atlantic Meridional Overturning Circulation (AMOC). Speleothem calcium carbonate oxygen isotope records (δ 18 O Cc ) indicate that the collapse of the AMOC caused dramatic changes in the distribution and variability of the East Asian and Indian monsoon rainfall. However, the mechanisms linking changes in the intensity of the AMOC and Asian monsoon δ 18 O Cc are not fully understood. Part of the challenge arises from the fact that speleothem δ 18 O Cc depends on not only the δ 18 O of precipitation but also temperature and kinetic isotope effects. Here we quantitatively deconvolve these parameters affecting δ 18 O Cc by applying three geochemical techniques in speleothems covering the penultimate glacial termination. Our data suggest that the weakening of the AMOC during meltwater pulse 2A caused substantial cooling in East Asia and a shortening of the summer monsoon season, whereas the collapse of the AMOC during meltwater pulse 2B (133,000 years ago) also caused a dramatic decrease in the intensity of the Indian summer monsoon. These results reveal that the different modes of the AMOC produced distinct impacts on the monsoon system.more » « less
-
Abstract N2fixation in low‐latitude surface waters dominates the input of fixed nitrogen (N) to the global ocean, sustaining ocean fertility. In the Caribbean Sea, higher foraminifera‐bound (FB‐)δ15N indicates a decline in N2fixation during ice ages, but its cause and broader implications are unclear. Here, we report three additional Atlantic FB‐δ15N records, from the subtropical North and South Atlantic gyres (MSM58‐50 and DSDP Site 516) and the equatorial Atlantic (ODP Site 662). Similar glacial and interglacial δ15N in the equatorial Atlantic suggests a stable δ15N for the nitrate below the gyre thermoclines. The North Atlantic record shows a FB‐δ15N rise during the ice ages, resembling a previously published FB‐δ15N record from the South China Sea. The commonality among the FB‐δ15N records is that they resemble sea level‐driven variation in regional shelf area, with high FB‐δ15N (inferred reduction in N2fixation) during periods of low shelf area. The South China Sea shows the largest δ15N signal, the subtropical North Atlantic shows less, and the South Atlantic shows the least, the same ordering as the ice age reductions in continental shelf area in the different regions. Reduced shelf sedimentary denitrification would have increased the nitrogen‐to‐phosphorus ratio of the nutrient supply to open ocean surface waters, leading to decreased N2fixation and thus higher gyre thermocline nitrate δ15N, explaining the higher FB‐δ15N of peak ice ages. These observations identify shelf sediment denitrification as an important regional driver of modern N2fixation and imply strong basin‐scale coupling of fixed nitrogen losses and inputs.
-
null (Ed.)Madagascar and the Mascarene Islands of Mauritius and Rodrigues underwent catastrophic ecological and landscape transformations, which virtually eliminated their entire endemic vertebrate megafauna during the past millennium. These ecosystem changes have been alternately attributed to either human activities, climate change, or both, but parsing their relative importance, particularly in the case of Madagascar, has proven difficult. Here, we present a multimillennial (approximately the past 8000 years) reconstruction of the southwest Indian Ocean hydroclimate variability using speleothems from the island of Rodrigues, located ∼1600 km east of Madagascar. The record shows a recurring pattern of hydroclimate variability characterized by submillennial-scale drying trends, which were punctuated by decadal-to-multidecadal megadroughts, including during the late Holocene. Our data imply that the megafauna of the Mascarenes and Madagascar were resilient, enduring repeated past episodes of severe climate stress, but collapsed when a major increase in human activity occurred in the context of a prominent drying trend.more » « less
-
Rationale Blood water oxygen isotope compositions can provide valuable insights into physiological processes and ecological patterns. While blood samples are commonly drawn for medical or scientific purposes, blood fractions are infrequently measured for oxygen isotopic compositions (δ18O) because such measurements are time consuming and expensive.
Methods We sampled blood from sheep, goats, and iguanas raised in field and animal laboratories into serum, EDTA, heparin, and uncoated plastic vials commonly used in medical and scientific research, then separated red blood cell (RBC) and plasma or serum blood fractions. These were injected into helium‐flushed Exetainer tubes where they naturally outgassed endogenous CO2(goat blood), or into He‐ and CO2‐flushed tubes (iguana blood). The CO2gas was sampled on a GasBench II system, and δ18O was measured by an isotope ratio mass spectrometer (IRMS).
Results Repeated δ18O measurements were stable over multiple days. The addition of desiccated blood solids to water standards had little impact on their δ18O measurements, suggesting that organic molecular constituents within blood serum and plasma do not interfere with blood water δ18O values. We observed slight but statistically significant δ18O offsets between plasma, serum and RBC fractions. Mass‐dependent body water turnover times for iguanas were derived from the data.
Conclusions We demonstrate that a simple blood‐CO2equilibration method using the GasBench can quickly, reliably and accurately characterize water δ18O in the plasma, RBC, and whole blood fractions of mammalian and reptilian blood samples (precision ≤ 0.1‰). This method will expand the application of blood stable isotope analysis in physiological and medical research.