skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vourlitis, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Humulus lupulus L., commonly known as hops, is a perennial crop grown worldwide and is well known for its pharmacological, commercial, and most importantly brewing applications. For hundreds of years, hops have undergone intense artificial selection with over 250 cultivated varieties being developed worldwide, all displaying differences in key characteristics such as bitter acid concentrations, flavor and aroma profiles, changes in photoperiod, growth, and pathogen/pest resistances. Previous studies have individually explored differences between cultivars, aiming to identify markers that can quickly and cost-effectively differentiate between cultivars. However, little is known about their evolutionary history and the variability in their associated rhizospheric microbial communities. Coupling phenotypic, genomic, and soil metagenomic data, our study aims to explore the global population structure and domestication history of 98 hops cultivars. Additionally, we assessed differences in growth rates, rates of viral infection, usage of dissolvable nitrogen, and soil microbial community compositions between US and non-US based cultivars. Contrary to previous studies, our study revealed that worldwide hop cultivars cluster into four primary subpopulations; Central European, English, and American ancestry as previously reported, and one new group, the Nobles, revealing further substructure amongst Central European cultivars. Modeling the evolutionary history of domesticated hops reveals an early divergence of the common ancestors of modern US cultivars around 2800 ybp, and more recent divergences with gene flow across English, Central European, and Noble cultivars, reconciled with key events in human history and migrations. Furthermore, cultivars of US origin were shown to overall outperform non-US cultivars in both growth rates and usage of dissolvable nitrogen and display novel microbial composition. 
    more » « less
    Free, publicly-accessible full text available November 2, 2025
  2. Brazilian tropical ecosystems in the state of Mato Grosso have experienced significant land use and cover changes during the past few decades due to deforestation and wildfire. These changes can directly affect the mass and energy exchange near the surface and, consequently, evapotranspiration (ET). Characterization of the seasonal patterns of ET can help in understanding how these tropical ecosystems function with a changing climate. The goal of this study was to characterize temporal (seasonal-to-decadal) and spatial patterns in ET over Mato Grosso using remotely sensed products. Ecosystems over areas with limited to no flux towers can be performed using remote sensing products such as NASA’s MOD16A2 ET (MOD16 ET). As the accuracy of this product in tropical ecosystems is unknown, a secondary objective of this study was to evaluate the ability of the MOD16 ET (ETMODIS) to appropriately represent the spatial and seasonal ET patterns in Mato Grosso, Brazil. Actual ET was measured (ETMeasured) using eight flux towers, three in the Amazon, three in the Cerrado, and two in the Pantanal of Mato Grosso. In general, the ETMODIS of all sites had no significant difference from ETMeasured during all analyzed periods, and ETMODIS had a significant moderate to strong correlation with the ETMeasured. The spatial variation of ET had some similarity to the climatology of Mato Grosso, with higher ET in the mid to southern parts of Mato Grosso (Cerrado and Pantanal) during the wet period compared to the dry period. The ET in the Amazon had three seasonal patterns, a higher and lower ET in the wet season compared to the dry season, and minimal to insignificant variation in ET during the wet and dry seasons. The wet season ET in Amazon decreased from the first and second decades, but the ET during the wet and dry season increased in Cerrado and Pantanal in the same period. This study highlights the importance of deepening the study of ET in the state of Mato Grosso due to the land cover and climate change. 
    more » « less
  3. Urban landscaping conversions can alter decomposition processes and soil respiration, making it difficult to forecast regional CO2 emissions. Here we explore rates of initial mass loss and net nitrogen (N) mineralization in natural and four common urban land covers (waterwise, waterwise with mulch, shrub, and lawn) from sites across seven colleges in southern California. We found that rates of decomposition and net N mineralization were faster for high-N leaf substrates, and natural habitats exhibited slower rates of decomposition and mineralization than managed urban landcovers, especially lawns and areas with added mulch. These results were consistent across college campuses, suggesting that our findings are robust and can predict decomposition rates across southern California. While mechanisms driving differences in decomposition rates among habitats in the cool-wet spring were difficult to identify, elevated decomposition in urban habitats highlights that conversion of natural areas to urban landscapes enhances greenhouse gas emissions. While perceived as sustainable, elevated decomposition rates in areas with added mulch mean that while these transformations may reduce water inputs, they increase soil carbon (C) flux. Mimicking natural landscapes by reducing water and nutrient (mulch) inputs and planting drought-tolerant native vegetation with recalcitrant litter can slow decomposition and reduce regional C emissions. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less