skip to main content

Search for: All records

Creators/Authors contains: "Wadiasingh, Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetar giant flares are rare and highly energetic phenomena observed in the transient sky whose emission mechanisms are still not fully understood. Depending on the nature of the excited modes of the magnetar, they are also expected to emit gravitational waves (GWs), which may bring unique information about the dynamics of the excitation. A few magnetar giant flares have been proposed to be associated with short gamma-ray bursts. In this paper we use a new gravitational-wave search algorithm to revisit the possible emission of GWs from four magnetar giant flares within 5 Mpc. While no gravitational-wave signals were observed, we discuss the future prospects of detecting signals with more sensitive gravitational-wave detectors. In particular, we show that galactic magnetar giant flares that emit at least 1% of their electromagnetic energy as GWs could be detected during the planned observing run of the LIGO and Virgo detectors at design sensitivity, with even better prospects for third-generation detectors.
  2. ABSTRACT The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6–5618 contains a periodic optical and X-ray source that was predicted to be a ‘redback’ millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home-distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039–5617. Optical light-curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination i ≳ 60°, for a low pulsar mass between $1.1\, \mathrm{M}_{\odot } \lt M_{\rm psr} \lt $ 1.6 M⊙, and a companion mass of 0.15–$0.22\, \mathrm{M}_{\odot }$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find thatmore »the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion star’s optical photon field.« less
  3. null (Ed.)