skip to main content


Search for: All records

Creators/Authors contains: "Waechter, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Feng, B. ; Pedrielli, G ; Peng, Y. ; Shashaani, S. ; Song, E. ; Corlu, C. ; Lee, L. ; Chew, E. ; Roeder, T. ; Lendermann, P. (Ed.)
    The Rapid Gaussian Markov Improvement Algorithm (rGMIA) solves discrete optimization via simulation problems by using a Gaussian Markov random field and complete expected improvement as the sampling and stopping criterion. rGMIA has been created as a sequential sampling procedure run on a single processor. In this paper, we extend rGMIA to a parallel computing environment when q+1 solutions can be simulated in parallel. To this end, we introduce the q-point complete expected improvement criterion to determine a batch of q+1 solutions to simulate. This new criterion is implemented in a new object-oriented rGMIA package. 
    more » « less
  2. Feng, B. ; Pedrielli, G ; Peng, Y. ; Shashaani, S. ; Song, E. ; Corlu, C. ; Lee, L. ; Chew, E. ; Roeder, T. ; Lendermann, P. (Ed.)
    The Rapid Gaussian Markov Improvement Algorithm (rGMIA) solves discrete optimization via simulation problems by using a Gaussian Markov random field and complete expected improvement as the sampling and stopping criterion. rGMIA has been created as a sequential sampling procedure run on a single processor. In this paper, we extend rGMIA to a parallel computing environment when q+1 solutions can be simulated in parallel. To this end, we introduce the q-point complete expected improvement criterion to determine a batch of q+1 solutions to simulate. This new criterion is implemented in a new object-oriented rGMIA package. 
    more » « less