Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bacterial contamination of surface water is a public health concern. To quantify the efflux ofEscherichia coliinto ephemeral and intermittent streams and assess its numbers in relation to secondary body contact standards, we monitored runoff and measuredE. colinumbers from 10 experimental watersheds that differed in vegetation cover and cattle access in north‐central Oklahoma.Escherichia colinumbers were not significantly different among the watersheds, with one exception; the grazed prairie watershed (GP1) had greater numbers compared to one ungrazed prairie watershed (UP2). MedianE. colinumbers in runoff from ungrazed watersheds ranged from 260 to 1482 MPN/100 mL in comparison with grazed watersheds that ranged from 320 to 8878 MPN/100 mL. In the GP1 watershed, higher cattle stocking rates during pre‐ and post‐calving (February–May) resulted in significantly greater bacterial numbers and event loading compared to periods with lower stocking rates. The lack of significance among watersheds is likely due to the grazed sites being rotationally (and lightly) grazed, data variability, and wildlife contributions. To address wildlife sources, we used camera trap data to assess the usage in the watersheds; however, the average number of animals in a 24‐h period did not correlate with observed medianE. colinumbers. Because of its impacts onE. colinumbers in water, grazing management (stocking rate, rotation, and timing) should be considered for improving water quality in streams and reservoirs.more » « less
-
Landowners and natural resource agencies are seeking to better understand the benefits of best management practices (BMPs) for addressing water quality issues. Using edge-of-field and edge-of-farm runoff analysis, we compared runoff volumes and water quality between small watersheds where BMPs (e.g., prescribed grazing, silvicultural practices) were implemented and control watersheds managed using conventional practices (i.e., continuous grazing, natural forest revegetation). Flow-weighted samples, collected over a 2-year period using automated samplers, were analyzed for nitrate/nitrite nitrogen (NNN), total Kjeldahl nitrogen (TKN), total phosphorus (P), ortho-phosphate phosphorous (OP), total suspended solids (TSS), and Escherichia coli (E. coli). Comparison of silvicultural planting to conventional reforestation practices showed a significant decrease in NNN loads (p < 0.05) but no significant differences in TKN, P, OP, TSS, or E. coli. Continuously grazed sites yielded >24% more runoff than sites that were under prescribed grazing regimes, despite receiving less total rainfall. Likewise, NNN, TSS, and TKN loadings were significantly lower under prescribed grazing management than on conventionally grazed sites (p < 0.05). Data suggests that grazing BMPs can be an effective tool for rapidly improving water quality. However, silvicultural BMPs require more time (i.e., >2 years) to establish and achieve detectable improvements.more » « less
-
Abstract We present 3 yr of high-contrast imaging of the PDS 70 b and c accreting protoplanets with the new extreme AO system MagAO-X as part of the MaxProtoPlanetS survey of Hαprotoplanets. In 2023 and 2024, our sharp (25–27 mas FWHM), well-AO-corrected (20%–26% Strehl), deep (2–3.6 hr) images detected compact (r∼ 30 mas;r∼ 3 au) circumplanetary disks (CPDs) surrounding both protoplanets. Starlight scattering off the front edge of these dusty CPDs is the likely source of the bright compact continuum light detected within ∼30 mas of both planets in our simultaneously obtained continuum 668 nm filter images. After subtraction of contaminating continuum and point-spread function residuals withpyKLIPangular differential imaging and spectral differential imaging, we obtained high-contrast ASDI Hαimages of both planets in 2022, 2023, and 2024. We find the Hαline flux of planet b fell by (8.1 ± 1.6) × 10−16erg s−1cm−2, a factor of 4.6 drop in flux from 2022 to 2023. In 2024 March, planet b continued to be faint with just a slight 1.6× rise to an Hαline flux of (3.64 ± 0.87) × 10−16erg s−1cm−2. For c, we measure a significant increase of (2.74 ± 0.51) × 10−16erg s−1cm−2from 2023 to 2024, which is a factor of 2.3 increase. So both protoplanets have recently experienced significant Hαvariability with ∼1 yr sampling. In 2024, planet c is brighter than b: as c is brightening and b generally fading. We also tentatively detect one new point source “CC3” inside the inner disk (∼49 mas; at PA ∼ 295°; 2024) with orbital motion roughly consistent with a ∼5.6 au orbit.more » « less
-
Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)Free, publicly-accessible full text available September 17, 2025
-
The Arkansas River and its tributaries provide critical water resources for agricultural irrigation, hydropower generation, and public water supply in the Arkansas River Basin (ARB). However, climate change and other environmental factors have imposed significant impacts on regional hydrological processes, resulting in widespread ecological and economic consequences. In this study, we projected future river flow patterns in the 21st century across the entire ARB under two climate and socio-economic change scenarios (i.e., SSP2-RCP45 and SSP5-RCP85) using the process-based Dynamic Land Ecosystem Model (DLEM). We designed “baseline simulations” (all driving factors were kept constant at the level circa 2000) and “environmental change simulations” (at least one driving factor changed over time during 2001–2099) to simulate the inter-annual variations of river flow and quantify the contributions of four driving factors (i.e., climate change, CO2 concentration, atmospheric nitrogen deposition, and land use change). Results showed that the Arkansas River flow in 2080–2099 would decrease by 12.1% in the SSP2-RCP45 and 27.9% in the SSP5-RCP85 compared to that during 2000–2019. River flow decline would occur from the beginning to the middle of this century in the SSP2-RCP45 and happen throughout the entire century in the SSP5-RCP85. All major rivers in the ARB would experience river flow decline with the largest percentage reduction in the western and southwestern ARB. Warming and drying climates would account for 77%–95% of the reduction. The rising CO2 concentration would exacerbate the decline through increasing foliage area and ecosystem evapotranspiration. This study provides insight into the spatial patterns of future changes in water availability in the ARB and the underlying mechanisms controlling these changes. This information is critical for designing watershed-specific management strategies to maintain regional water resource sustainability and mitigate the adverse impacts of climate changes on water availability.more » « less
-
Algal blooms in freshwater ecosystems can negatively impact aquatic and human health. Satellite remote sensing of chlorophyll a (Chl-a) is often used to help determine the severity of algal blooms. However, satellite revisit flyover schedules may not match the erratic nature of algal blooms. Studies have paired satellite and ground-based data that were not collected on the same day, assuming Chl-a concentrations did not change significantly by the flyover date. We determined the effects of an increasing time window between satellite overpass dates and field-based collection of Chl-a on algorithms for Landsat 5, Landsat 8, and Sentinel-2, using 14 years (2006–2020) of Chl-a data from 10 Oklahoma reservoirs. Multiple regression models were built, and selected statistics were used to rank the time windows. The Sentinel-2 results showed strong relationships between Chl-a and satellite data collected up to a ±5-day window. The strength of these relationships decreased beyond a ±3-day time window for Landsat 8 and a ±1-day time window for Landsat 5. Our results suggest that the time window between field sampling and satellite overpass can impact the use of satellite data for Chl-a monitoring in reservoirs. Furthermore, longer time windows can be used with higher resolution (spatial, spectral) satellites.more » « less
-
Global groundwater resources are under strain, with cascading effects on producers, food and fibre production systems, communities and ecosystems. Investments in biophysical research have clarified the challenges, catalysed a proliferation of technological solutions and supported incentivizing individual irrigators to adjust practices. However, groundwater management is fundamentally a governance challenge. The reticence to prioritize building governance capacity represents a critical ‘blind spot’ contributing to a low return on investment for research funding with negative consequences for communities moving closer towards resource depletion. In this Perspective, we recommend shifts in research, extension and policy priorities to build polycentric governance capacity and strategic planning tools, and to reorient priorities to sustaining aquifer-dependent communities in lieu of maximizing agricultural production at the scale of individual farm operations. To achieve these outcomes, groundwater governance needs to be not only prioritized but also democratized.more » « less