skip to main content

Search for: All records

Creators/Authors contains: "Wagner, Robert J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Dynamic networks containing multiple bond types within a continuous network grant engineers another design parameter – relative bond fraction – by which to tune storage and dissipation of mechanical energy. However, the mechanisms governing emergent properties are difficult to deduce experimentally. Therefore, we here employ a network model with prescribed fractions of dynamic and stable bonds to predict relaxation characteristics of hybrid networks. We find that during stress relaxation, predominantly dynamic networks can exhibit long-term moduli through conformationally inhibited relaxation of stable bonds due to exclusion interactions with neighboring chains. Meanwhile, predominantly stable networks exhibit minor relaxation through non-affine reconfiguration of dynamic bonds. Given this, we introduce a single fitting parameter, ξ , to Transient Network Theory via a coupled rule of mixture, that characterizes the extent of stable bond relaxation. Treating ξ as a fitting parameter, the coupled rule of mixture's predicted stress response not only agrees with the network model's, but also unveils likely micromechanical traits of gels hosting multiple bond dissociation timescales. 
    more » « less
  3. Maini, Philip K. (Ed.)
    Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capture through an ant-inspired phenomenological model. Local interactions occur between neighboring free ants within some radius of detection, R , and the persistence length of freely active agents is tuned through a noise parameter, η as introduced by the Vicsek model. Both R and η where fixed to match the experimental trajectories of free ants. Treadmilling of the raft occurs as agents transition between the structural and free layers in accordance with experimental observations. Ultimately, we demonstrate how phases of exploratory protrusion growth may be induced by increased ant activity as characterized by a dimensionless parameter, A . These results provide an example in which functional morphogenesis of a living system may emerge purely from local interactions at the constituent length scale, thereby providing a source of inspiration for the development of decentralized, autonomous active matter and swarm robotics. 
    more » « less
  4. Abstract

    Soft, worm-like robots show promise in complex and constrained environments due to their robust, yet simple movement patterns. Although many such robots have been developed, they either rely on tethered power supplies and complex designs or cannot move external loads. To address these issues, we here introduce a novel, maggot-inspired, magnetically driven “mag-bot” that utilizes shape memory alloy-induced, thermoresponsive actuation and surface pattern-induced anisotropic friction to achieve locomotion inspired by fly larvae. This simple, untethered design can carry cargo that weighs up to three times its own weight with only a 17% reduction in speed over unloaded conditions thereby demonstrating, for the first time, how soft, untethered robots may be used to carry loads in controlled environments. Given their small scale and low cost, we expect that these mag-bots may be used in remote, confined spaces for small objects handling or as components in more complex designs.

    more » « less
  5. null (Ed.)
    Dynamic networks contain crosslinks that re-associate after disconnecting, imparting them with viscoelastic properties. While continuum approaches have been developed to analyze their mechanical response, these approaches can only describe their evolution in an average sense, omitting local, stochastic mechanisms that are critical to damage initiation or strain localization. To address these limitations, we introduce a discrete numerical model that mesoscopically coarse-grains the individual constituents of a dynamic network to predict its mechanical and topological evolution. Each constituent consists of a set of flexible chains that are permanently cross-linked at one end and contain reversible binding sites at their free ends. We incorporate nonlinear force–extension of individual chains via a Langevin model, slip-bond dissociation through Eyring's model, and spatiotemporally-dependent bond attachment based on scaling theory. Applying incompressible, uniaxial tension to representative volume elements at a range of constant strain rates and network connectivities, we then compare the mechanical response of these networks to that predicted by the transient network theory. Ultimately, we find that the idealized continuum approach remains suitable for networks with high chain concentrations when deformed at low strain rates, yet the mesoscale model proves necessary for the exploration of localized stochastic events, such as variability of the bond kinetics, or the nucleation of micro-cavities that likely conceive damage and fracture. 
    more » « less
  6. null (Ed.)
    Fire ants ( Solenopsis invicta ) are exemplary for their formation of cohered, buoyant and dynamic structures composed entirely of their own bodies when exposed to flooded environments. Here, we observe tether-like protrusions that emerge from aggregated fire ant rafts when docked to stationary, vertical rods. Ant rafts comprise a floating, structural network of interconnected ants on which a layer of freely active ants walk. We show here that sustained shape evolution is permitted by the competing mechanisms of perpetual raft contraction aided by the transition of bulk structural ants to the free active layer and outward raft expansion owing to the deposition of free ants into the structural network at the edges, culminating in global treadmilling. Furthermore, we see that protrusions emerge as a result of asymmetries in the edge deposition rate of free ants. Employing both experimental characterization and a model for self-propelled particles in strong confinement, we interpret that these asymmetries are likely to occur stochastically owing to wall accumulation effects and directional motion of active ants when strongly confined by the protrusions' relatively narrow boundaries. Together, these effects may realize the cooperative, yet spontaneous formation of protrusions that fire ants sometimes use for functional exploration and to escape flooded environments. 
    more » « less
  7. Abstract

    Hydrogels containing thermosensitive polymers such as poly(N‐isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+) that coordinate with functional groups along the P(AAc) chains, here a thermoresponsive hydrogel with enhanced mechanical extensibility, strength, and toughness is introduced. Using both experimentation and constitutive modeling, it is found that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self‐healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) decreases slightly with increased Fe3+concentration, the temperature transition range is widened and shifted upward toward that of human body temperature (between 30 and 40 °C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications.

    more » « less