Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Maresca, Julia A (Ed.)ABSTRACT Draft genomes were generated for three filamentous toxin-producing cyanobacterial strains cultivated from aquatic sources in Ohio sequenced by NovaSeq S4. Here, we report the classification and genome statistics ofPlanktothrix rubescensPR221, PR222, and PR223.more » « lessFree, publicly-accessible full text available September 9, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
Abstract The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin‐producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevatedcyrAabundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022,cyrAexceeded 10 million copies L−1where there were more than 6000Cylindrospermopsisspp. cells mL−1. In contrast, the southwestern region had elevatedmcyEgene (microcystin synthesis) detections near Homa Bay whereMicrocystisandDolichospermumspp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Grand Lake St. Marys (GLSM) is a popular recreational lake located in western Ohio, United States, generating nearly $150 million in annual revenue. However, recurring algal blooms dominated by Planktothrix agardhii , which can produce harmful microcystin toxins, have raised concerns about water safety and negatively impacted the local economy. Planktothrix agardhii is host to a number of parasites and pathogens, including an obligate fungal parasite in the Chytridiomycota (chytrids). In this study, we investigated the potential of these chytrid ( Rhizophydium sp.) to infect P. agardhii blooms in the environment by modifying certain environmental conditions thought to limit infection prevalence in the wild. With a focus on temperature and water mixing, mesocosms were designed to either increase or decrease water flow compared to the control (water outside the mesocosm). In the control and water circulation mesocosms, infections were found infrequently and were found on less than 0.75% of the Planktothrix population. On the other hand, by decreasing the water flow to stagnation, chytrid infections were more frequent (found in nearly 3x as many samples) and more prevalent, reaching a maximum infection rate of 4.12%. In addition, qPCR coupled with 16S–18S sequencing was utilized to confirm the genetic presence of both host and parasite, as well as to better understand the effect of water circulation on the community composition. Statistical analysis of the data confirmed that chytrid infection was dependent on water temperature, with infections predominantly occurring between 19°C and 23°C. Additionally, water turbulence can significantly reduce the infectivity of chytrids, as infections were mostly found in stagnant mesocosms. Further, decreasing the water circulation promoted the growth of the cyanobacterial population, while increasing water agitation promoted the growth of green algae (Chlorophyta). This study starts to explore the environmental factors that affect chytrid pathogenesis which can provide valuable insights into controlling measures to reduce the prevalence of harmful algal blooms and improve water quality in GLSM and similarly affected waterbodies.more » « less
-
Newton, Irene_L G (Ed.)ABSTRACT We report 40 metagenomic libraries collected from the Winam Gulf of Lake Victoria during May–July of 2022–2023 and an additional eight opportunistic libraries from adjacent Lakes Simbi, Naivasha, and regional river systems. The sampling period captured cyanobacterial bloom events – shedding insight onto community composition and genomic potential.more » « lessFree, publicly-accessible full text available November 12, 2025