skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Walczak, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent Internet-of-Things (IoT) networks span across a multitude of stationary and robotic devices, namely unmanned ground vehicles, surface vessels, and aerial drones, to carry out mission-critical services such as search and rescue operations, wildfire monitoring, and flood/hurricane impact assessment. Achieving communication synchrony, reliability, and minimal communication jitter among these devices is a key challenge both at the simulation and system levels of implementation due to the underpinning differences between a physics-based robot operating system (ROS) simulator that is time-based and a network-based wireless simulator that is event-based, in addition to the complex dynamics of mobile and heterogeneous IoT devices deployed in a real environment. Nevertheless, synchronization between physics (robotics) and network simulators is one of the most difficult issues to address in simulating a heterogeneous multi-robot system before transitioning it into practice. The existing TCP/IP communication protocol-based synchronizing middleware mostly relied on Robot Operating System 1 (ROS1), which expends a significant portion of communication bandwidth and time due to its master-based architecture. To address these issues, we design a novel synchronizing middleware between robotics and traditional wireless network simulators, relying on the newly released real-time ROS2 architecture with a master-less packet discovery mechanism. Additionally, we propose a ground and aerial agents’ velocity-aware customized QoS policy for Data Distribution Service (DDS) to minimize the packet loss and transmission latency between a diverse set of robotic agents, and we offer the theoretical guarantee of our proposed QoS policy. We performed extensive network performance evaluations both at the simulation and system levels in terms of packet loss probability and average latency with line-of-sight (LOS) and non-line-of-sight (NLOS) and TCP/UDP communication protocols over our proposed ROS2-based synchronization middleware. Moreover, for a comparative study, we presented a detailed ablation study replacing NS-3 with a real-time wireless network simulator, EMANE, and masterless ROS2 with master-based ROS1. Our proposed middleware attests to the promise of building a largescale IoT infrastructure with a diverse set of stationary and robotic devices that achieve low-latency communications (12% and 11% reduction in simulation and reality, respectively) while satisfying the reliability (10% and 15% packet loss reduction in simulation and reality, respectively) and high-fidelity requirements of mission-critical applications. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  2. Abstract

    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$R<1.072with 90 % confidence level.

    more » « less
  3. Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019. 
    more » « less
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available September 1, 2024
  7. Free, publicly-accessible full text available August 1, 2024
  8. A<sc>bstract</sc>

    Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb1. The search uses two observables,$$ \mathcal{O} $$O1and$$ \mathcal{O} $$O3, which are Lorentz scalars. The observable$$ \mathcal{O} $$O1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$O3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.

    more » « less
  9. Abstract

    The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$+-, dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$m, transverse momentum$$p_{\textrm{T}} (\ell \ell )$$pT(), and$$\varphi ^{*}_{\eta }$$φη. The$$\varphi ^{*}_{\eta }$$φηobservable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$pT(), is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$pT()region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$TeVare investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$mranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$fb-1of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

    more » « less