skip to main content

Search for: All records

Creators/Authors contains: "Walker, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2023
  2. Free, publicly-accessible full text available March 28, 2023
  3. Abstract The StraboSpot data system provides field-based geologists the ability to digitally collect, archive, query, and share data. Recent efforts have expanded this data system with the vocabulary, standards, and workflow utilized by the sedimentary geology community. A standardized vocabulary that honors typical workflows for collecting sedimentologic and stratigraphic field and laboratory data was developed through a series of focused workshops and vetted/refined through subsequent workshops and field trips. This new vocabulary was designed to fit within the underlying structure of StraboSpot and resulted in the expansion of the existing data structure. Although the map-based approach of StraboSpot did notmore »fully conform to the workflow for sedimentary geologists, new functions were developed for the sedimentary community to facilitate descriptions, interpretations, and the plotting of measured sections to document stratigraphic position and relationships between data types. Consequently, a new modality was added to StraboSpot—Strat Mode—which now accommodates sedimentary workflows that enable users to document stratigraphic positions and relationships and automates construction of measured stratigraphic sections. Strat Mode facilitates data collection and co-location of multiple data types (e.g., descriptive observations, images, samples, and measurements) in geographic and stratigraphic coordinates across multiple scales, thus preserving spatial and stratigraphic relationships in the data structure. Incorporating these digital technologies will lead to better research communication in sedimentology through a common vocabulary, shared standards, and open data archiving and sharing.« less
    Free, publicly-accessible full text available November 1, 2022
  4. Here we document a 1000-year fungal record from the raised-field region of the Llanos de Moxos, a seasonally inundated forest-savanna mosaic in the Bolivian Amazon. Fungi are extremely sensitive to changes in vegetation due to their close relationship with the local environment, providing a useful proxy for past local vegetation and land-use change. Here the remains of fungal non-pollen palynomorphs (NPPs) are identified from a sediment core taken from Laguna El Cerrito. A multivariate constrained ordination is used to extract relationships between the fungal NPP types and environmental gradients, specifically, tree cover, near-shore vegetation, crop cultivation, burning and local sedimentmore »input. NPP types such as Neurospora cf. cerealis are identified as indicative of pre- European agriculture and offer the ability to expand on the temporal range of cultivation in the raised-field region. Constrained cluster analysis indicates that the most significant changes in the NPP assemblage occurs c. 1500 and c. 1700 CE, corresponding to the arrival of Europeans to the Americas and Jesuit missionaries to the Llanos de Moxos respectively. The modern savanna landscape is one shaped by changes in land-use and the introduction of cattle following the European Encounter.« less
  5. Free, publicly-accessible full text available June 1, 2023
  6. Free, publicly-accessible full text available March 1, 2023
  7. Free, publicly-accessible full text available December 1, 2022
  8. This study suggests a new method for determining the viability of Ascaris spp. ova, based on in-vitro early-to-late stage development of ova. This method includes stages prior to larval development, providing an estimation of potential viability.After application of biosolids onto soil and exposure to 7°C, 22°C, or 37°C for 45 days, ova were microscopically distinguished as viable or non-viable according to progression through development categories. Results were compared to viability estimates from current methods that distinguish viable ova as motile larva. Results suggest conventional techniques underestimate viability, whereas the new method provides a more conservative approach.