skip to main content


Search for: All records

Creators/Authors contains: "Walker, S Brett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Simulation and experimental studies are carried out on single‐layer and double‐layer embedded metal meshes (SLEMM and DLEMM) to assess their performance as transparent electromagnetic interference (EMI) shielding. The structures consist of silver meshes embedded in polyethylene terephthalate (PET). As a transparent electrode, SLEMMs exhibit a transparency of 82.7% and a sheet resistance of 0.61 Ωsq−1as well as 91.0% and 1.49 Ωsq−1. This performance corresponds to figures of merit of 3101 and 2620, respectively. The SLEMMs achieve 48.0 dB EMI shielding efficiency (SE) in the frequency range of 8–18 GHz (X‐ and Ku‐bands) with 91% visible transmission and 56.2 dB EMI SE with 82.7% visible transmission. Samples exhibit stable performance after 1000 bending cycles with a radius of curvature of 4 mm and 60 tape test cycles. DLEMMs consist of fabricating SLEMM on opposite sides of the substrate where the distance can be varied using a spacer. Simulations are performed to investigate how varying spacer distance between two layers of metal meshes influences the EMI SE. DLEMMs are fabricated and achieved an EMI SE of 77.7 dB with 81.7% visible transmission. SLEMMs and DLEMMs may have a wide variety of applications in aerospace, medical, and military applications.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Free, publicly-accessible full text available January 27, 2025
  3. Abstract

    The realization of optically active structures with direct‐write printing has been challenging, particularly in spatially constrained microfluidic devices which are essential for point‐of‐care (POC) applications. The existing techniques are limited by resolution, accessibility, and multistep fabrication constraints. “Point‐and‐shoot” strategies to achieve site‐specific fabrication of optically active Ag rings and on‐demand targeted surface‐enhanced optical spectroscopy are reported. Stable microbubbles over an Au nanoisland (AuNI) substrate are generated using a continuous‐wave laser at low power (≈0.5 mW µm−2). Analytical modeling of bubble generation process substantiates the evolution of ring morphology and its power dependence. The tunable Ag rings exhibit surface plasmon resonances in the mid‐IR regime from 3.8 to 4.6 µm, while the AuNI shows visible region response. The Ag ring over the AuNI imparts intensified surface‐enhanced Raman spectroscopy (SERS) activity owing to amplified hot spots at Ag ring/AuNI interface. As an example, SERS and surface‐enhanced infrared spectroscopy of rhodamine 6G, crystal violet, and 2,4,6‐trinitrotoluene molecules, respectively, are demonstrated. The applicability of this technique to perform in situ fabrication and SERS sensing in microfluidic channels is shown. Using a simple in situ approach toward optically active structures, our technique can synergize multiple surface‐enhanced optical spectroscopies to facilitate POC applications.

     
    more » « less