skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Shamon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dr. Sudipta Maiti (Ed.)
    IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically dis-ordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based upon the intrinsical-ly disordered proteins (IDPs) parameters of fractional net charge (FNC), of net charge density per residue (NCPR) and of charge patterning (), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs; thus, making IA3 a bimodal-domain IDP. Site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes – analyzed in terms of their local tumbling volume (VL) – provide insight into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution pat-terns within a conformational subclass can impact bound water hydration dynamics; thus, possibly offering an alter-native thermodynamic property that can encode conforma-tional binding and behavior of IDPs and liquid-liquid phase separations. 
    more » « less