skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wall, Diana H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Belowground eukaryotic diversity serves a vital role in soil ecosystem functioning, yet the composition, structure, and macroecology of these communities are significantly under‐characterized. The National Ecological Observatory Network (NEON) provides publicly available datasets from long‐term surveillance of numerous taxa and ecosystem properties. However, this dataset is not routinely evaluated for its eukaryotic component, likely because analyzing metagenomes for eukaryotic sequences is hampered by low relative sequence abundance, large genomes, poorer eukaryote representation in public reference databases, and is not yet mainstream. We mined the NEON soil metagenome datasets for 18S rRNA sequences using a custom‐built pipeline and produced a preliminary assessment of biodiversity trends in North American soil eukaryotes. We extracted ~800 18S rRNA reads per sample (~22,000 reads per site) from 1455 samples from 495 plots across 45 NEON sites in 11 biomes, which corresponded to 5183 genera in 35 phyla. To our knowledge, this represents the first large‐scale soil eukaryote analysis of NEON data. We asked whether taxonomic richness paralleled patterns previously established ecological trends and found that eukaryotic richness was negatively correlated with pH, managed sites lowered eukaryotic richness by 47%, most biomes had a distinct eukaryotic community, and fire decreased eukaryotic richness. These findings parallel generally accepted ecological trends and support the notion that NEON soil metagenome datasets can and should be used to explore spatiotemporal patterns in soil eukaryote diversity, its association with ecosystem functioning, and its response to environmental changes in North America. 
    more » « less
  2. Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a latitudinal range of 72–85 °S, as well as Lauft Island near Mt. Siple (73 °S) in West Antarctica and Macquarie Island (54oS) in the sub-Antarctic. We assessed genetic diversity using mitochondrial cytochrome c oxidase subunit I gene sequences (COI-5P DNA barcode region), and also morphologically identified voucher specimens. We obtained 130 sequences representing four genera: Nanorchestes (n = 30 sequences), Stereotydeus (n = 46), Coccorhagidia (n = 18) and Eupodes (n = 36). Tree-based analyses (maximum likelihood) revealed 13 genetic clusters, representing as many as 23 putative species indicated by barcode index numbers (BINs) from the Barcode of Life Datasystems (BOLD) database. We found evidence for geographically-isolated cryptic species, e.g., within Stereotydeus belli and S. punctatus, as well as unique genetic groups occurring in sympatry (e.g., Nanorchestes spp. in QMM). Collectively, these data confirm high genetic divergence as a consequence of geographic isolation over evolutionary timescales. From a conservation perspective, additional targeted sampling of understudied areas in the Ross Sea region should be prioritised, as further diversity is likely to be found in these short-range endemic mites. 
    more » « less
  3. Lurgi, Miguel (Ed.)
    ABSTRACT Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions. 
    more » « less
  4. Mackelprang, Rachel (Ed.)
    ABSTRACT The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth. 
    more » « less
  5. null (Ed.)
  6. Biotic interactions structure ecological communities but abiotic factors affect the strength of these relationships. These interactions are difficult to study in soils due to their vast biodiversity and the many environmental factors that affect soil species. The McMurdo Dry Valleys (MDV), Antarctica, are relatively simple soil ecosystems compared to temperate soils, making them an excellent study system for the trophic relationships of soil. Soil microbes and relatively few species of nematodes, rotifers, tardigrades, springtails, and mites are patchily distributed across the cold, dry landscape, which lacks vascular plants and terrestrial vertebrates. However, glacier and permafrost melt are expected to cause shifts in soil moisture and solutes across this ecosystem. To test how increased moisture and salinity affect soil invertebrates and their biotic interactions, we established a laboratory microcosm experiment (4 community × 2 moisture × 2 salinity treatments). Community treatments were: (1) Bacteria only (control), (2) Scottnema (S. lindsayae + bacteria), (3) Eudorylaimus (E. antarcticus + bacteria), and (4) Mixed (S. lindsayae + E. antarcticus + bacteria). Salinity and moisture treatments were control and high. High moisture reduced S. lindsayae adults, while high salinity reduced the total S. lindsayae population. We found that S. lindsayae exerted top-down control over soil bacteria populations, but this effect was dependent on salinity treatment. In the high salinity treatment, bacteria were released from top-down pressure as S. lindsayae declined. Ours was the first study to empirically demonstrate, although in lab microcosm conditions, top-down control in the MDV soil food web. 
    more » « less