skip to main content


Search for: All records

Creators/Authors contains: "Wallace, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on spectroscopic measurements on the4f76s28S7/2∘<#comment/>→<#comment/>4f7(8S∘<#comment/>)6s6p(1P∘<#comment/>)8P9/2transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the6s6p(1P∘<#comment/>)8P9/2state were found to beA(151)=−<#comment/>228.84(2)MHz,B(151)=226.9(5)MHzandA(153)=−<#comment/>101.87(6)MHz,B(153)=575.4(1.5)MHz, which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.

     
    more » « less
  2. Abstract

    Observations of seismic anisotropy can provide direct constraints on the character of mantle flow in subduction zones, critical for our broader understanding of subduction dynamics. Here we present over 750 new SKS splitting measurements in the vicinity of Mount St. Helens in the Cascadia subduction zone using a combination of stations from the iMUSH broadband array and Cascades Volcano Observatory network. This provides the highest density of splitting measurements yet available in Cascadia, acting as a focused “telescope” for seismic anisotropy in the subduction zone. We retrieve spatially consistent splitting parameters (mean fast directionΦ: 74°, mean delay time∂t: 1.0 s) with the azimuthal occurrence of nulls in agreement with the fast direction of splitting. When averaged across the array, a 90° periodicity in splitting parameters as a function of back azimuth is revealed, which has not been recovered previously with single‐station observations. The periodicity is characterized by a sawtooth pattern inΦwith a clearly defined 45° trend. We present new equations that reproduce this behavior based upon known systematic errors when calculating shear wave splitting from data with realistic seismic noise. The corrected results suggest a single layer of anisotropy with an ENE‐WSW fast axis parallel to the motion of the subducting Juan de Fuca plate; in agreement with predictions for entrained subslab mantle flow. The splitting pattern is consistent with that seen throughout Cascadia, suggesting that entrainment of the underlying asthenosphere with the subducting slab is coherent and widespread.

     
    more » « less
  3. Abstract

    High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 “High-Energy Starting Events” (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8$$\sigma $$σsignificance.

     
    more » « less
  4. null (Ed.)
  5. Abstract IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)