Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Louis, Annie (Ed.)Abstract Multi-document summarization entails producing concise synopses of collections of inputs. For some applications, the synopsis should accurately synthesize inputs with respect to a key aspect, e.g., a synopsis of film reviews written about a particular movie should reflect the average critic consensus. As a more consequential example, narrative summaries that accompany biomedical systematic reviews of clinical trial results should accurately summarize the potentially conflicting results from individual trials. In this paper we ask: To what extent do modern multi-document summarization models implicitly perform this sort of synthesis? We run experiments over opinion and evidence synthesis datasets using a suite of summarization models, from fine-tuned transformers to GPT-4. We find that existing models partially perform synthesis, but imperfectly: Even the best performing models are over-sensitive to changes in input ordering and under-sensitive to changes in input compositions (e.g., ratio of positive to negative reviews). We propose a simple, general, effective method for improving model synthesis capabilities by generating an explicitly diverse set of candidate outputs, and then selecting from these the string best aligned with the expected aggregate measure for the inputs, or abstaining when the model produces no good candidate.more » « less
-
Deshpande, Kaivalya; Fiterau, Madalina; Joshi, Shalmali; Lipton, Zachary; Ranganath, Rajesh; Urteaga, Iñigo (Ed.)
-
Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper, we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.more » « less
-
We report the presence of a simple neural mechanism that represents an input- output function as a vector within autoregressive transformer language models (LMs). Using causal mediation analysis on a diverse range of in-context-learning (ICL) tasks, we find that a small number attention heads transport a compact representation of the demonstrated task, which we call a function vector (FV). FVs are robust to changes in context, i.e., they trigger execution of the task on inputs such as zero-shot and natural text settings that do not resemble the ICL contexts from which they are collected. We test FVs across a range of tasks, models, and layers and find strong causal effects across settings in middle layers. We investigate the internal structure of FVs and find while that they often contain information that encodes the output space of the function, this information alone is not sufficient to reconstruct an FV. Finally, we test semantic vector composition in FVs, and find that to some extent they can be summed to create vectors that trigger new complex tasks. Our findings show that compact, causal internal vector representations of function abstractions can be explicitly extracted from LLMs.more » « less
-
Eliciting chain of thought (CoT) rationales - sequences of token that convey a “reasoning” process has been shown to consistently improve LLM performance on tasks like question answering. More recent efforts have shown that such rationales can also be used for model distillation: Including CoT sequences (elicited from a large “teacher” model) in addition to target labels when fine-tuning a small student model yields (often substantial) improvements. In this work we ask: Why and how does this additional training signal help in model distillation? We perform ablations to interrogate this, and report some potentially surprising results. Specifically: (1) Placing CoT sequences after labels (rather than before) realizes consistently better downstream performance – this means that no student “reasoning” is necessary at test time to realize gains. (2) When rationales are appended in this way, they need not be coherent reasoning sequences to yield improvements; performance increases are robust to permutations of CoT tokens, for example. In fact, (3) a small number of key tokens are sufficient to achieve improvements equivalent to those observed when full rationales are used in model distillation.more » « less
-
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b’s tokenizer splits the word “patrolling” into two tokens, “pat” and “rolling”, neither of which correspond to semantically meaningful units like “patrol” or "-ing.” Similarly, the overall meanings of named entities like “Neil Young” and multi-word expressions like “break a leg” cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced “erasure” effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to “read out” the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.more » « less
An official website of the United States government

Full Text Available