skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallace, Elizabeth_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The short and biased observational record of tropical cyclones (TCs) limits scientific understanding of how these destructive storms respond to climate forcing. Paleohurricane records use natural archives (tree rings, coarse‐grained sediment) to reconstruct TC properties (frequency and intensity of rainfall, wind) over the past few hundreds to thousands of years. However, different sensitivities and sampling biases in the various paleohurricane proxies restrict our ability to compile these records into regional or basin‐scale TC estimates. Here we test how well pseudo tree‐ring records of paleohurricanes capture TC rainfall and occurrence. Using a large set of statistically downscaled storms forced with the Max Planck Institute (MPI‐ESM‐P) model as boundary conditions for the past millennium, we generate a 1000‐member ensemble of pseudo tree‐ring records of latewood width from southern Mississippi using a Poisson process‐based random draw. Pseudo records convert synthetic TC rainfall into latewood width using a previously published statistical calibration and seasonal sensitivity. We show that fourth quantile thresholds applied to pseudo latewood data successfully identify years with TC strikes. Comparing pseudo tree‐ring records with pseudo sediment records from the Gulf Coast indicates promise in combining proxies sensitive to TC rainfall with proxies sensitive to storm overwash. Sediment records that are sensitive to lower intensity storms (≥Saffir Simpson Category 1) are more compatible with tree‐ring records, suggesting a need for more of these low intensity threshold records in the Gulf to facilitate future multi‐proxy efforts to reconstruct past TC properties. 
    more » « less
  2. Abstract Tropical cyclone (TC) impacts along the western Atlantic and Caribbean margin are not spatially uniform. Proxy based reconstructions of Common Era TC activity highlight this non‐uniform distribution at centennial‐millennial timescales. However, the sparse geographic scope of these reconstructions impedes our assessment of TC landfalls across broader spatial domains. This work presents a compilation of new and existing TC reconstructions from the Yucatan Peninsula for comparison with a contemporaneous compilation from New England, showing that these regions occupy distal nodes of a low‐frequency TC dipole. Increased Yucatan (New England) storminess is closely linked to intervals of Northern Hemisphere warming (cooling) and the expansion (contraction) of the Intertropical Convergence Zone, suggesting that secular shifts in the mean climate state mediate dipole orientation. 
    more » « less