- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Breger, Joyce C. (3)
-
Walper, Scott A. (3)
-
Claussen, Jonathan C. (2)
-
Medintz, Igor L. (2)
-
Alves, Nathan J. (1)
-
Baingane, Ankit (1)
-
Gomes, Carmen (1)
-
Hasan, Qumrul (1)
-
Hondred, John A. (1)
-
Hooe, Shelby L. (1)
-
Jared, Nathan (1)
-
Johnson, Zachary T. (1)
-
Li, Jingzhe (1)
-
Peterson, John K. (1)
-
Shriver-Lake, Lisa C. (1)
-
Slaughter, Gymama (1)
-
Smith, Emily A. (1)
-
Stenger, David A. (1)
-
Trammell, Scott A. (1)
-
Yuen, Jonathan D. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM–45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries.more » « less
-
Hondred, John A.; Breger, Joyce C.; Alves, Nathan J.; Trammell, Scott A.; Walper, Scott A.; Medintz, Igor L.; Claussen, Jonathan C. (, ACS Applied Materials & Interfaces)
-
Johnson, Zachary T.; Jared, Nathan; Peterson, John K.; Li, Jingzhe; Smith, Emily A.; Walper, Scott A.; Hooe, Shelby L.; Breger, Joyce C.; Medintz, Igor L.; Gomes, Carmen; et al (, Global Challenges)Abstract Glyphosate is a globally applied herbicide yet it has been relatively undetectable in‐field samples outside of gold‐standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers’ urine, surface waters and crop residues. Rapid, on‐site detection of glyphosate is hindered by lack of field‐deployable and easy‐to‐use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum‐decorated laser‐induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10–260µm, detection limit of 3.03µm, and sensitivity of 0.991 nAµm−1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4‐dichlorophenoxyacetic acid, dicamba, parathion‐methyl, paraoxon‐methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct‐write, and selective method of glyphosate detection for herbicide mapping and food analysis.more » « less