Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dusty circumnuclear disks (CNDs) in luminous early-type galaxies (ETGs) show regular, dynamically cold molecular gas kinematics. For a growing number of ETGs, Atacama Large Millimeter/sub-millimeter Array (ALMA) CO imaging and detailed gas-dynamical modeling facilitate moderate-to-high precision black hole (BH) mass (M_BH) determinations. From the ALMA archive, we identified a subset of 26 ETGs with estimated M_BH/Msun ≳ 10^8 to a few x 10^9 and clean CO kinematics but that previously did not have sufficiently high-angular-resolution near-IR observations to mitigate dust obscuration when constructing stellar luminosity models. We present new optical and near-IR Hubble Space Telescope (HST) images of this sample to supplement the archival HST data, detailing the sample properties and data-analysis techniques. After masking the most apparent dust features, we measure stellar surface-brightness profiles and model the luminosities using the multi-Gaussian expansion (MGE) formalism. Some of these MGEs have already been used in CO dynamical modeling efforts to secure quality M_BH determinations, and the remaining ETG targets here are expected to significantly improve the high-mass end of the current BH census, facilitating new scrutiny of local BH mass–host galaxy scaling relationships. We also explore stellar isophotal behavior and general dust properties, finding these CNDs generally become optically thick in the near-IR (A_H ≳ 1 mag). These CNDs are typically well aligned with the larger-scale stellar photometric axes, with a few notable exceptions. Uncertain dust impact on the MGE often dominates the BH mass error budget, so extensions of this work will focus on constraining CND dust attenuation.more » « lessFree, publicly-accessible full text available August 29, 2025
-
Abstract The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios ofp= 0.845 for the middle-to-long principal axes andq= 0.722 for the short-to-long principal axes, and determine the black hole mass to be , where the second error indicates the systematic uncertainty associated with the distance to M87.more » « less
-
Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108M⊙with a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109M⊙in NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.more » « less
-
Abstract We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We find and a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 and , triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer and , respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data.more » « less
-
ABSTRACT We have used Hubble Space Telescope (HST) images, SAURON Integral Field Spectroscopy (IFS), and adaptative optics assisted Gemini NIFS near-infrared K-band IFS to map the stellar and gas distribution, excitation and kinematics of the inner few kpc of the nearby edge-on S0 galaxy NGC 4111. The HST images map its ≈450 pc diameter dusty polar ring, with an estimated gas mass ≥107 M⊙. The NIFS data cube maps the inner 110 pc radius at ≈7 pc spatial resolution, revealing a ≈220 pc diameter polar ring in hot (2267 ± 166 K) molecular H2 1–0 S(1) gas embedded in the polar ring. The stellar velocity field shows disc-dominated kinematics along the galaxy plane both in the SAURON large scale and in the NIFS nuclear-scale data. The large-scale [O iii] λ5007 Å velocity field shows a superposition of two disc kinematics: one similar to that of the stars and another along the polar ring, showing non-circular motions that seem to connect with the velocity field of the nuclear H2 ring, whose kinematics indicate accelerated inflow to the nucleus. The estimated mass inflow rate is enough not only to feed an active galactic nucleus (AGN) but also to trigger circumnuclear star formation in the near future. We propose a scenario in which gas from the polar ring, which probably originated from the capture of a dwarf galaxy, is moving inwards and triggering an AGN, as supported by the local X-ray emission, which seems to be the source of the H2 1–0 S(1) excitation. The fact that we see neither near-UV nor Br γ emission suggests that the nascent AGN is still deeply buried under the optically thick dust of the polar ring.more » « less