skip to main content

Search for: All records

Creators/Authors contains: "Walsh, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 5, 2022
  2. The magnetometer instrument on the Solar Orbiter mission is designed to measure the magnetic field local to the spacecraft continuously for the entire mission duration. The need to characterise not only the background magnetic field but also its variations on scales from far above to well below the proton gyroscale result in challenging requirements on stability, precision, and noise, as well as magnetic and operational limitations on both the spacecraft and other instruments. The challenging vibration and thermal environment has led to significant development of the mechanical sensor design. The overall instrument design, performance, data products, and operational strategy aremore »described.« less
  3. Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with anmore »earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.« less
    Free, publicly-accessible full text available November 1, 2022
  6. Free, publicly-accessible full text available September 1, 2022
  7. Free, publicly-accessible full text available September 1, 2022
  8. Free, publicly-accessible full text available August 1, 2022
  9. Free, publicly-accessible full text available August 1, 2022