skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walsh, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we present a center manifold reduction theorem for quasilinear elliptic equations posed on infinite cylinders that is done without a phase space in the sense that we avoid explicitly reformulating the PDE as an evolution problem. Under suitable hypotheses, the resulting center manifold is finite dimensional and captures all sufficiently small bounded solutions. Compared with classical methods, the reduced ODE on the manifold is more directly related to the original physical problem and also easier to compute. The analysis is conducted directly in Hölder spaces, which is often desirable for elliptic equations. We then use this machinery to construct small bounded solutions to a variety of systems. These include heteroclinic and homoclinic solutions of the anti-plane shear problem from nonlinear elasticity; exact slow moving invasion fronts in a two-dimensional Fisher–KPP equation; and hydrodynamic bores with vorticity in a channel. The last example is particularly interesting in that we find solutions with critical layers and distinctive ‘half cat’s eye’ streamline patterns. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)