Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We give an overview of the applications of noncommutative geometry to physics. Our focus is entirely on the conceptual ideas, rather than on the underlying technicalities. Starting historically from the Heisenberg relations, we will explain how in general noncommutativity yields a canonical time evolution, while at the same time allowing for the coexistence of discrete and continuous variables. The spectral approach to geometry is then explained to encompass two natural ingredients: the line element and the algebra. The relation between these two is dictated by so-called higher Heisenberg relations, from which both spin geometry and non-abelian gauge theory emerges. Our exposition indicates some of the applications in physics, including Pati–Salam unification beyond the Standard Model, the criticality of dimension 4, second quantization and entropy.more » « less
-
Abstract Context Spatial occupancy and local abundance of species often positively covary, but the mechanisms driving this widespread relationship are poorly understood. Resource dynamics and habitat changes have been suggested as potential drivers, but long-term studies relating them to abundance and occupancy are rare. In this 34-year study of acorn woodpeckers (
Melanerpes formicivorus ), a cooperatively breeding species, we observed a paradoxical response to changes in habitat composition: despite a reduction in the availability of high-quality breeding habitat, the population increased considerably.Objectives We investigated the role of annual variation in food availability and long-term changes in habitat composition as predictors of population dynamics.
Methods Using model selection, we contrasted competing hypotheses on the effects of changing resource availability on occupancy and social group size across three spatial scales: territory, neighborhood, and landscape.
Results The increase in abundance was largely determined by the formation of new social groups, driven by a landscape-level expansion of canopy cover and its interaction with neighborhood-level acorn abundance, indicative of long-term increases in overall acorn productivity. Group size increased with neighborhood acorn crop two years earlier but groups were smaller in territories with more canopy cover.
Conclusions Our results indicate that scale-dependent processes can result in paradoxical relationships in systems with spatial and temporal resource heterogeneity. Moreover, the findings support the role of resources in driving changes in abundance and occupancy at a landscape scale, suggesting that colonization of marginal habitat drives the positive occupancy-abundance relationship in this cooperatively breeding species.
-
null (Ed.)This paper presents a single-aperture, single-pixel reader for communication with Optical Frequency Identification (OFID) tags. OFID tags use solar cells to transmit and receive information wirelessly as well as to harvest radiant energy. Due to its single-aperture architecture, the reader's optical system provides a shared optical path for reception and transmission. Also, physical alignment between the reader and an OFID tag is visually guided using the reader's emitted light, securing a robust data link as long as the OFID tag is illuminated. In this paper, a description of the reader's optical and electronic sub-systems are presented. The transmitter and receiver circuits are described in detail. The transmitter, built with a linear LED driver, achieves a power efficiency of nearly 87%. The receiver, featuring a third-order bandpass filter, reduces both low-frequency and high-frequency ambient noise. A prototype of the reader was fabricated and housed in a custom 3D-printed enclosure. Test results show that the reader is able to receive modulated luminescent signals from an OFID tag at a distance of 1 m and at a data rate of 3 kbps.more » « less
-
null (Ed.)This paper presents a circuit for simultaneous reception of optical power and data using a solar cell. The circuit employs a switched-inductor boost DC-DC converter for energy harvesting and a low-power thresholding receiver for data reception. The thresholding data receiver comprises a current-sense resistor that monitors the current output of the solar cell, an instrumentation amplifier, a band-pass filter and a comparator. A system-level analysis of an optical communication system employing the proposed circuit is presented along with a circuit-level analysis and implementation. As a proof-of-concept, the proposed circuit for simultaneous power and data reception is implemented using off-the-shelf components and tested using a custom-built test setup. Measurement results, including harvested power, electronic noise and bit error rate (BER), are reported for a GaAs solar cell and a red LED light source. Results show that 223 μW of power are harvested by the DC-DC converter at a distance of 32.5 cm and a radiated power of 9.3 mW. At a modulation depth of 50% and a transmission speed of 2.5 kbps, a BER of 1.008×10^-3 is achieved. Measurement results reveal that the proposed solution exhibits a trade-off between harvested power, transmission speed and BER.more » « less
-
Abstract This study provides a global assessment of the abundance of the major oxides in the deep continental crust. The combination of geochemistry and seismology better constrains the composition of the middle and lower continental crust better than either discipline can achieve alone. The inaccessible nature of the deep crust (typically >15 km) forces reliance on analog samples and modeling results to interpret its bulk composition, evolution, and physical properties. A common practice relates major oxide compositions of small‐ to medium‐scale samples (e.g., medium to high metamorphic grade terrains and xenoliths) to large scale measurements of seismic velocities (Vp, Vs, Vp/Vs) to determine the composition of the deep crust. We provide a framework for building crustal models with multidisciplinary constraints on composition. We present a global deep crustal model that documents compositional changes with depth and accounts for uncertainties in Moho depth, temperature, and physical and chemical properties. Our 3D compositional model of the deep crust uses the USGS Global Seismic Structure Catalog (Mooney, 2015) and a compilation of geochemical analyses on amphibolite and granulite facies lithologies (Sammon & McDonough, 2021,
https://doi.org/10.1029/2021JB022791 ). We find a SiO2gradient from 61.2 ± 7.3 to 53.3 ± 4.8 wt.% from the middle to the base of the crust, with the equivalent lithological gradient ranging from quartz monzonite to gabbronorite. In addition, we calculate trace element abundances as a function of depth from their correlations with major oxides. From here, other lithospheric properties, such as Moho heat flux (mW/m2), are derived. -
null (Ed.)Kepler data for three SRS: stars, V616 Lyrae, V607 Lyrae, and V621 Lyrae, were analyzed to study their period structure. Two of the stars had confirmed SRS light curve characteristics. V616 Lyr shows two strong periods at 16.91 days and 8.18 days. V607 Lyr shows one strong period at 13.55 days. V616 Lyr and V607 Lyr also display amplitude changes common to the SR stars. Variability was not detected for V621 Lyr. Evidence for solar-like oscillations in V616 Lyr is presented.more » « less
-
null (Ed.)Abstract Quantization of the noncommutative geometric spectral action has so far been performed on the final component form of the action where all traces over the Dirac matrices and symmetry algebra are carried out. In this work, in order to preserve the noncommutative geometric structure of the formalism, we derive the quantization rules for propagators and vertices in matrix form. We show that the results in the case of a product of a four-dimensional Euclidean manifold by a finite space, could be cast in the form of that of a Yang–Mills theory. We illustrate the procedure for the toy electroweak model.more » « less