- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, B (1)
-
Hayman, NW (1)
-
Murray, K (1)
-
Ogwari, P (1)
-
Suriamin, F (1)
-
Walter, JI (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Disposal of industrial wastewater and activities such as CO2 depend on pressure conditions within deep geologic reservoirs. Injection and storage are also associated with induced seismicity, suggested to result from reservoir compartmentalization and leakage into faults. To understand subsurface pressure conditions within a major regional disposal reservoir, the carbonate Arbuckle Group of Oklahoma, we monitored the water levels in 15 inactive injection wells. The wells were monitored at 30-second intervals, with eight wells monitored since September 2016, and an additional seven from July 2017. All of the wells were monitored until early March 2020. Since 2016, well levels decreased in 3 of the 15 wells (a.k.a. hydraulic head), proportional to near-borehole fluid pressure even considering decreasing regional injection volumes during this period. The well pressures respond to three types of perturbations: (i) gravitational fkuctuations (a.k.a. solid-earth tides) (ii) distal and proximal earthquakes, and (iii) injections into nearby wells. Parameterization of tidal responses illustrates that the near wellbore environments have negative fluid flux (i.e. are leaking). Earthquakes cause differing pressure responses from well to well, with some highly sensitive to proximal events, some to distal events, and some apparently insensitive. Injections have variable impacts in some cases masking tidal and earthquake pressure signals. Collectively, there appears to be a threshold injection rate above which well pressure becomes less sensitive to the volume of injections within 15 km. Multi-scale geological structure and temporal permeability changes are likely controlling the pressure field, indicating leakage of fluids across the system.more » « lessFree, publicly-accessible full text available November 3, 2025