skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wan, Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Two tetraarylphosphonium polyelectrolytes having perfluorocyclobutyl units in their backbones have been prepared in which the counteranion is either bromide (PFP·Br) or bis(trifluoromethyl)sulfonimide (PFP·NTf2). These polymers exhibit high thermal stability as assessed by thermogravimetric analysis, with a decomposition temperature of 460 °C forPFP·NTf2. Even after heating at 300 °C for 72 h,PFP·NTf2shows no signs of degradation detectable by nuclear magnetic resonance spectrometry. As is typical for many tetraarylphosphonium species, films of these polymers can be quite resistant to degradation by alkaline solution. Upon alkaline challenge by exposure to 6MNaOH at 65 °C for 24 h, for example, only 16% of the phosphonium centers inPFP·NTf2are degraded, makingPFP·NTf2one of the most alkaline‐stable phosphonium polymers to date. Despite having ionic backbones,PFP·Br andPFP·NTf2exhibit very low critical surface energies of 26.1 and 22.9 mJ m−1, respectively. These values are on par with the values for poly(vinylene fluoride) and dimethylsiloxane. Such low surface energy polycations capable of high alkaline stability may find application as components of alkaline fuel cell membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 2267–2272

     
    more » « less
  2. ABSTRACT

    A series of 10 polythiophene derivatives is reported, in which each polymer has a different percentage of carboxylic acid‐bearing repeat units. The properties of these polymers are explored under acidic conditions, where the carboxylic acid moieties remain neutral, and under basic conditions, where the carboxylic acid units become anionic carboxylates. The properties that are examined for both solutions and films include UV–vis absorption spectroscopy, photoluminescence spectroscopy, and red‐edge optical band gaps. All the properties studied are strongly dependent both on protonation state and percentage of carboxylic acid/carboxylate side chains along the polymer backbone. The anionic form of each polythiophene derivative was also used in layer‐by‐layer film deposition with a cationic phosphonium polyelectrolyte. The film growth process was studied by spectroscopic techniques to assess the influence of side‐chain composition on the film growth and optical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019

     
    more » « less
  3. ABSTRACT

    The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity againstStaphylococcus aureusandEscherichia coliwas assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 24–34

     
    more » « less