The shape of the heliosphere is currently under active debate. Energetic neutral atoms (ENAs) offer the best method for investigating the global structure of the heliosphere. To date, the Interstellar Boundary Explorer (IBEX) and the Ion and Neutral Camera (INCA) that was on board Cassini provide the only global ENA observations of the heliosphere. While extensive modeling has been done at IBEX-Hi energies (0.52–6 keV), no global ENA modeling has been conducted for INCA energies (5.2–55 keV). Here, we use an ENA model of the heliosphere based on hybrid results that capture the heating and acceleration of pickup ions (PUIs) at the termination shock to compare modeled global ENA results with IBEX-Hi and INCA observations using both a long- and short-tail model of the heliosphere. We find that the modeled ENA results for the two heliotail configurations produce similar results from the IBEX-Hi through the INCA energies. We conclude from our modeled ENAs, which only include PUI acceleration at the termination shock, that ENA observations in currently available energy ranges are insufficient for probing the shape and length of the heliotail. However, as a prediction for the future IMAP-Ultra mission (3–300 keV) we present modeled ENA maps at 80more »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The structure of shocks and turbulence are strongly modified during the acceleration of cosmic rays (CRs) at a shock wave. The pressure and the collisionless viscous stress decelerate the incoming thermal gas and thus modify the shock structure. A CR streaming instability ahead of the shock generates the turbulence on which CRs scatter. The turbulent magnetic field in turn determines the CR diffusion coefficient and further affects the CR energy spectrum and pressure distribution. The dissipation of turbulence contributes to heating the thermal gas. Within a multicomponent fluid framework, CRs and thermal gas are treated as fluids and are closely coupled to the turbulence. The system equations comprise the gas dynamic equations, the CR pressure evolution equation, and the turbulence transport equations, and we adopt typical parameters for the hot ionized interstellar medium. It is shown that the shock has no discontinuity but possesses a narrow but smooth transition. The self-generated turbulent magnetic field is much stronger than both the large-scale magnetic field and the preexisting turbulent magnetic field. The resulting CR diffusion coefficient is substantially suppressed and is more than three orders smaller near the shock than it is far upstream. The results are qualitatively consistent with certainmore »Free, publicly-accessible full text available June 1, 2023
-
Abstract Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the well-known WKB transport equation for Alfvén wave energy density after introducing appropriate definitions of the “pressure” associated with the turbulent fluctuations. This includes introducing a distinct turbulent pressure tensor for 3D incompressible turbulence (the large plasma beta limit) and pressure tensors for quasi-2D and slab turbulence (the plasma beta order-unity or small regimes) that generalize the form of the WKB pressure tensor. Various limits of the different turbulent pressure tensors are discussed. However, the analogy between the conservation form of the turbulence transport models and the WKB model is not close for multiple reasons, including that the turbulence models express fully nonlinear physical processes unlike the strictly linear WKB description. The analysis presented here both serves as amore »